生物技术通报 ›› 2022, Vol. 38 ›› Issue (1): 299-310.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0176
康子清1(), 张银龙1,2(), 吴永波1,2, 谢冬1, 薛建辉2,3, 华建峰3
收稿日期:
2021-02-09
出版日期:
2022-01-26
发布日期:
2022-02-22
作者简介:
康子清,男,硕士研究生,研究方向:环境科学;E-mail: 基金资助:
KANG Zi-qing1(), ZHANG Yin-long1,2(), WU Yong-bo1,2, XIE Dong1, XUE Jian-hui2,3, HUA Jian-feng3
Received:
2021-02-09
Published:
2022-01-26
Online:
2022-02-22
摘要:
环境DNA宏条形码(eDNA metabarcoding)技术通过提取水体、土壤、空气中的环境DNA,使用引物PCR扩增与高通量测序,进行物种鉴定与生物多样性评估。作为一种新的监测技术,相比于传统监测技术更加快捷、准确以及对自然环境的破坏小,因此在一定程度上改变了我们调查地球生物多样性的方式。本文综述了环境DNA宏条形码技术的发展历程与操作流程;归纳了在水体、土壤、空气环境中的应用现状,并总结了其独特的间接生物多样性监测方法,同时讨论了优势及存在的问题,以期能为后续生物多样性研究与监测研究提供新的思路和启发。
康子清, 张银龙, 吴永波, 谢冬, 薛建辉, 华建峰. 环境DNA宏条形码在生物多样性研究与监测中的应用[J]. 生物技术通报, 2022, 38(1): 299-310.
KANG Zi-qing, ZHANG Yin-long, WU Yong-bo, XIE Dong, XUE Jian-hui, HUA Jian-feng. Application of Environmental DNA Metabarcoding in Biodiversity Research and Monitoring[J]. Biotechnology Bulletin, 2022, 38(1): 299-310.
图1 环境DNA宏条形码技术在水体、土壤、空气中的应用流程 环境与样本类型从左到右为①冰川/苔原:沉积物、土壤、生物样本;②土壤环境:土壤、根系、生物样本;③空气环境:空气;④水环境:沉积物、生物样本、水体
Fig.1 Application process of environmental DNA macrobarcoding technology in water,soil and air Environment and sample types from left to right:① Glacier/Tundra:sediment,soil,and biological samples;② soil environment:soil,roots,biological samples;③ air environment:air;④ water environment:sediments,biological samples,and water
[1] | 曲建升, 李延梅, 王雪梅, 等. 生物多样性研究发展态势与挑战[J]. 科学观察, 2009, 4(6):1-8. |
Qu JS, Li YM, Wang XM, et al. International research profiles and challenges of biodiversity science[J]. Sci Focus, 2009, 4(6):1-8. | |
[2] |
Butchart SHM, Walpole M, Collen B, et al. Global biodiversity:indicators of recent declines[J]. Science, 2010, 328(5982):1164-1168.
doi: 10.1126/science.1187512 pmid: 20430971 |
[3] |
Gavrilescu M, Demnerová K, Aamand J, et al. Emerging pollutants in the environment:present and future challenges in biomonitoring, ecological risks and bioremediation[J]. N Biotechnol, 2015, 32(1):147-156.
doi: 10.1016/j.nbt.2014.01.001 URL |
[4] |
Siddig AAH, Ellison AM, Ochs A, et al. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators[J]. Ecol Indic, 2016, 60:223-230.
doi: 10.1016/j.ecolind.2015.06.036 URL |
[5] |
Thomsen PF, Willerslev E. Environmental DNA - An emerging tool in conservation for monitoring past and present biodiversity[J]. Biol Conserv, 2015, 183:4-18.
doi: 10.1016/j.biocon.2014.11.019 URL |
[6] | Holdaway R, Research L, Wood J, et al. Using DNA meta barcoding to assess New Zealand’s terrestrial biodiversity[J]. NZ J Ecol, 2017, 41(2):251-262. |
[7] |
Levy-Booth DJ, Campbell RG, Gulden RH, et al. Cycling of extracellular DNA in the soil environment[J]. Soil Biol Biochem, 2007, 39(12):2977-2991.
doi: 10.1016/j.soilbio.2007.06.020 URL |
[8] |
Pietramellara G, Ascher J, Borgogni F, et al. Extracellular DNA in soil and sediment:fate and ecological relevance[J]. Biol Fertil Soils, 2009, 45(3):219-235.
doi: 10.1007/s00374-008-0345-8 URL |
[9] |
Ogram A, Sayler GS, Barkay T. The extraction and purification of microbial DNA from sediments[J]. J Microbiol Methods, 1987, 7(2/3):57-66.
doi: 10.1016/0167-7012(87)90025-X URL |
[10] |
Hebert PD, Cywinska A, Ball SL, et al. Biological identifications through DNA barcodes[J]. Proc Biol Sci, 2003, 270(1512):313-321.
doi: 10.1098/rspb.2002.2218 URL |
[11] |
Erickson DL, Spouge J, Resch A, et al. Dna barcoding in land plants:developing standards to quantify and maximize success[J]. Taxon, 2008, 57(4):1304-1316.
pmid: 19779570 |
[12] | 杨耀华. DNA条形码技术的应用进展[J]. 中国医药指南, 2013, 11(17):484-485. |
Yang YH. Advances in the application of DNA barcoding technology[J]. Guide China Med, 2013, 11(17):484-485. | |
[13] | 武宇鹏, 丁亮, 李捷, 等. DNA条形码的应用进展及讨论[J]. 环境昆虫学报, 2011, 33(1):99-106. |
Wu YP, Ding L, Li J, et al. DNA barcoding:current progresses and discussions[J]. J Environ Entomol, 2011, 33(1):99-106. | |
[14] |
Valentini A, Taberlet P, Miaud C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding[J]. Mol Ecol, 2016, 25(4):929-942.
doi: 10.1111/mec.13428 pmid: 26479867 |
[15] | Ruppert KM, Kline RJ, Rahman MS. Past, present, and future perspectives of environmental DNA(eDNA)metabarcoding:a systematic review in methods, monitoring, and applications of global eDNA[J]. Glob Ecol Conserv, 2019, 17:e00547. |
[16] |
Dickie IA, Boyer S, Buckley HL, et al. Towards robust and repeatable sampling methods in eDNA-based studies[J]. Mol Ecol Resour, 2018, 18(5):940-952.
doi: 10.1111/men.2018.18.issue-5 URL |
[17] | SAYER C, SHILLAND E, GREAVES H, et al. Managing Britain’s ponds-conservation lessons from a Norfolk farm[J]. British Wildlife, 2013, 25(October):21-28. |
[18] |
Zhang S, Lu Q, et al. Assessment of fish communities using environmental DNA:Effect of spatial sampling design in lentic systems of different sizes[J]. Mol Ecol Resour, 2020, 20(1):242-255.
doi: 10.1111/1755-0998.13105 pmid: 31625686 |
[19] |
Strickland GJ, Roberts JH. Utility of eDNA and occupancy models for monitoring an endangered fish across diverse riverine habitats[J]. Hydrobiologia, 2019, 826(1):129-144.
doi: 10.1007/s10750-018-3723-8 |
[20] | 樊晓燕, 高景峰. 空气微生物群落样品采集、解析方法及研究进展[J]. 安全与环境学报, 2018, 18(1):357-363. |
Fan XY, Gao JF. On the sample collection, community analysis and research advances of the airborne microbial communities[J]. J Saf Environ, 2018, 18(1):357-363. | |
[21] |
Collins RA, Wangensteen OS, O’Gorman EJ, et al. Persistence of environmental DNA in marine systems[J]. Commun Biol, 2018, 1:185.
doi: 10.1038/s42003-018-0192-6 pmid: 30417122 |
[22] |
Jo T, Murakami H, Yamamoto S, et al. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution[J]. Ecol Evol, 2019, 9(3):1135-1146.
doi: 10.1002/ece3.2019.9.issue-3 URL |
[23] |
Strickler KM, Fremier AK, Goldberg CS. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms[J]. Biol Conserv, 2015, 183:85-92.
doi: 10.1016/j.biocon.2014.11.038 URL |
[24] |
Seymour M, Durance I, Cosby BJ, et al. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms[J]. Commun Biol, 2018, 1:4.
doi: 10.1038/s42003-017-0005-3 pmid: 30271891 |
[25] |
Kumar G, Eble JE, Gaither MR. A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA[J]. Mol Ecol Resour, 2020, 20(1):29-39.
doi: 10.1111/men.v20.1 URL |
[26] |
Robinson CV, Porter TM, Wright MTG, et al. Propylene glycol-based antifreeze is an effective preservative for DNA metabarcoding of benthic arthropods[J]. Freshwater Science, 2021, 40(1):77-87.
doi: 10.1086/712232 URL |
[27] |
Shu L, Ludwig A, Peng ZG. Standards for methods utilizing environmental DNA for detection of fish species[J]. Genes, 2020, 11(3):296.
doi: 10.3390/genes11030296 URL |
[28] | 李雁达, 张永吉. DNA提取试剂盒的综述[J]. 全科口腔医学电子杂志, 2019, 6(28):26. |
Li YD, Zhang YJ. A review of DNA extraction kits[J]. Electron J Gen Stomatol, 2019, 6(28):26. | |
[29] | 张瑞福, 曹慧, 崔中利, 等. 土壤微生物总DNA的提取和纯化[J]. 微生物学报, 2003, 43(2):276-282. |
Zhang RF, Cao H, Cui ZL, et al. Extraction and purification of soil microbial total DNA[J]. Acta Microbiol Sin, 2003, 43(2):276-282. | |
[30] |
Brooks JP, Edwards DJ, Harwich MD, et al. The truth about metagenomics:quantifying and counteracting bias in 16S rRNA studies[J]. BMC Microbiol, 2015, 15(1):1-14.
doi: 10.1186/s12866-014-0320-5 URL |
[31] |
Bell KL, Burgess KS, Okamoto KC, et al. Review and future prospects for DNA barcoding methods in forensic palynology[J]. Forensic Sci Int Genet, 2016, 21:110-116.
doi: 10.1016/j.fsigen.2015.12.010 URL |
[32] | Aguayo J, Fourrier-Jeandel C, Husson C, et al. Assessment of passive traps combined with high-throughput sequencing to study airborne fungal communities[J]. Appl Environ Microbiol, 2018, 84(11):e02637-17. |
[33] |
Banchi E, Pallavicini A, Muggia L. Relevance of plant and fungal DNA metabarcoding in aerobiology[J]. Aerobiologia, 2020, 36(1):9-23.
doi: 10.1007/s10453-019-09574-2 URL |
[34] |
Fišer Pečnikar Ž, Buzan EV. 20 years since the introduction of DNA barcoding:from theory to application[J]. J Appl Genet, 2014, 55(1):43-52.
doi: 10.1007/s13353-013-0180-y pmid: 24203863 |
[35] | 林森杰, 王路, 郑连明, 等. 海洋生物DNA条形码研究现状与展望[J]. 海洋学报, 2014, 36(12):1-17. |
Lin SJ, Wang L, Zheng LM, et al. Current status and future prospect of DNA barcoding in marine biology[J]. Acta Oceanol Sin, 2014, 36(12):1-17. | |
[36] |
Zhang GK, Chain FJJ, Abbott CL, et al. Metabarcoding using multiplexed markers increases species detection in complex zooplankton communities[J]. Evol Appl, 2018, 11(10):1901-1914.
doi: 10.1111/eva.12694 URL |
[37] |
Olds BP, Jerde CL, Renshaw MA, et al. Estimating species richness using environmental DNA[J]. Ecol Evol, 2016, 6(12):4214-4226.
doi: 10.1002/ece3.2016.6.issue-12 URL |
[38] |
Lim NKM, Tay YC, Srivathsan A, et al. Next-generation freshwater bioassessment:eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities[J]. R Soc Open Sci, 2016, 3(11):160635.
doi: 10.1098/rsos.160635 URL |
[39] |
Shaw JLA, Clarke LJ, Wedderburn SD, et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system[J]. Biol Conserv, 2016, 197:131-138.
doi: 10.1016/j.biocon.2016.03.010 URL |
[40] |
Hollingsworth PM. Refining the DNA barcode for land plants[J]. PNAS, 2011, 108(49):19451-19452.
doi: 10.1073/pnas.1116812108 pmid: 22109553 |
[41] |
Poczai P, Hyvönen J. Nuclear ribosomal spacer regions in plant phylogenetics:problems and prospects[J]. Mol Biol Rep, 2010, 37(4):1897-1912.
doi: 10.1007/s11033-009-9630-3 pmid: 19626457 |
[42] | 张宇, 郭良栋. 真菌DNA条形码研究进展[J]. 菌物学报, 2012, 31(6):809-820. |
Zhang Y, Guo LD. Progress of fungal DNA barcode[J]. Mycosystema, 2012, 31(6):809-820. | |
[43] |
Shokralla S, Spall JL, Gibson JF, et al. Next-generation sequencing technologies for environmental DNA research[J]. Mol Ecol, 2012, 21(8):1794-1805.
doi: 10.1111/j.1365-294X.2012.05538.x pmid: 22486820 |
[44] |
van Dijk EL, Jaszczyszyn Y, et al. The third revolution in sequencing technology[J]. Trends Genet, 2018, 34(9):666-681.
doi: 10.1016/j.tig.2018.05.008 URL |
[45] | Piper AM, Batovska J, Cogan NOI, et al. Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance[J]. Gigascience, 2019, 8(8):giz092. |
[46] |
Edgar RC, Flyvbjerg H. Error filtering, pair assembly and error correction for next-generation sequencing reads[J]. Bioinformatics, 2015, 31(21):3476-3482.
doi: 10.1093/bioinformatics/btv401 URL |
[47] |
Scott R, Zhan AB, Brown EA, et al. Optimization and performance testing of a sequence processing pipeline applied to detection of nonindigenous species[J]. Evol Appl, 2018, 11(6):891-905.
doi: 10.1111/eva.12604 pmid: 29928298 |
[48] |
Andruszkiewicz EA, Starks HA, Chavez FP, et al. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding[J]. PLoS One, 2017, 12(4):e0176343.
doi: 10.1371/journal.pone.0176343 URL |
[49] |
Chain FJJ, Brown EA, MacIsaac HJ, et al. Metabarcoding reveals strong spatial structure and temporal turnover of zooplankton communities among marine and freshwater Ports[J]. Diversity Distrib, 2016, 22(5):493-504.
doi: 10.1111/ddi.2016.22.issue-5 URL |
[50] |
Sohlberg E, Bomberg M, Miettinen H, et al. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland[J]. Front Microbiol, 2015, 6:573.
doi: 10.3389/fmicb.2015.00573 pmid: 26106376 |
[51] |
Bienert F, De Danieli S, et al. Tracking earthworm communities from soil DNA[J]. Mol Ecol, 2012, 21(8):2017-2030.
doi: 10.1111/j.1365-294X.2011.05407.x URL |
[52] |
Horton DJ, Kershner MW, Blackwood CB. Suitability of PCR primers for characterizing invertebrate communities from soil and leaf litter targeting metazoan 18S ribosomal or cytochrome oxidase I(COI)genes[J]. Eur J Soil Biol, 2017, 80:43-48.
doi: 10.1016/j.ejsobi.2017.04.003 URL |
[53] |
Calvignac-Spencer S, Merkel K, et al. Carrion fly-derived DNA as a tool for comprehensive and cost-effective assessment of mammalian biodiversity[J]. Mol Ecol, 2013, 22(4):915-924.
doi: 10.1111/mec.12183 pmid: 23298293 |
[54] |
Yamamoto N, Bibby K, Qian J, et al. Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air[J]. Isme J, 2012, 6(10):1801-1811.
doi: 10.1038/ismej.2012.30 URL |
[55] |
Nicolaisen M, West JS, Sapkota R, et al. Fungal communities including plant pathogens in near surface air are similar across northwestern Europe[J]. Front Microbiol, 2017, 8:1729.
doi: 10.3389/fmicb.2017.01729 pmid: 28943873 |
[56] |
Kraaijeveld K, de Weger LA, Ventayol García M, et al. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing[J]. Mol Ecol Resour, 2015, 15(1):8-16.
doi: 10.1111/1755-0998.12288 pmid: 24893805 |
[57] | Leese F, Bouchez A, Abarenkov K, et al. Why we need sustainable networks bridging countries, disciplines, cultures and generations for aquatic biomonitoring 2. 0:A perspective derived from the DNAqua-net COST action[M]// Next Generation Biomonitoring:Part 1. Amsterdam:Elsevier, 2018:63-99. |
[58] |
Thomsen PF, Kielgast J, Iversen LL, et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples[J]. PLoS One, 2012, 7(8):e41732.
doi: 10.1371/journal.pone.0041732 URL |
[59] |
Civade R, Dejean T, Valentini A, et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system[J]. PLoS One, 2016, 11(6):e0157366.
doi: 10.1371/journal.pone.0157366 URL |
[60] |
Ortega A, Geraldi NR, Duarte CM. Environmental DNA identifies marine macrophyte contributions to Blue Carbon sediments[J]. Limnol Oceanogr, 2020, 65(12):3139-3149.
doi: 10.1002/lno.v65.12 URL |
[61] |
Rivera SF, Vasselon V, et al. DNA metabarcoding and microscopic analyses of sea turtles biofilms:Complementary to understand turtle behavior[J]. PLoS One, 2018, 13(4):e0195770.
doi: 10.1371/journal.pone.0195770 URL |
[62] | Lopes CM, Baêta D, Valentini A, et al. Lost and found:Frogs in a biodiversity hotspot rediscovered with environmental DNA[J]. Mol Ecol, 2020: mec. 15594. |
[63] |
Takeuchi A, Sado T, Gotoh RO, et al. New PCR primers for metabarcoding environmental DNA from freshwater eels, genus Anguilla[J]. Sci Rep, 2019, 9(1):7977.
doi: 10.1038/s41598-019-44402-0 pmid: 31138865 |
[64] |
Song JW, Small MJ, Casman EA. Making sense of the noise:The effect of hydrology on silver carp eDNA detection in the Chicago area waterway system[J]. Sci Total Environ, 2017, 605/606:713-720.
doi: 10.1016/j.scitotenv.2017.06.255 URL |
[65] | 马竹欣. 利用环境DNA技术调查入侵种克氏原螯虾在元阳梯田的分布[D]. 昆明:云南大学, 2016. |
Ma ZX. Distribution of invasive crayfish Procambarus clarkii in Yuanyang terrace revealed by eDNA[D]. Kunming:Yunnan University, 2016. | |
[66] |
Willerslev E, Cappellini E, Boomsma W, et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland[J]. Science, 2007, 317(5834):111-114.
pmid: 17615355 |
[67] |
Willerslev E. Diverse plant and animal genetic records from Holocene and Pleistocene sediments[J]. Science, 2003, 300(5620):791-795.
pmid: 12702808 |
[68] |
Pedersen MW, Ruter A, Schweger C, et al. Postglacial viability and colonization in North America’s ice-free corridor[J]. Nature, 2016, 537(7618):45-49.
doi: 10.1038/nature19085 URL |
[69] |
Guardiola M, Uriz MJ, Taberlet P, et al. Deep-sea, deep-sequencing:metabarcoding extracellular DNA from sediments of marine canyons[J]. PLoS One, 2015, 10(10):e0139633.
doi: 10.1371/journal.pone.0139633 URL |
[70] |
Guardiola M, Wangensteen OS, Taberlet P, et al. Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA[J]. PeerJ, 2016, 4:e2807.
doi: 10.7717/peerj.2807 URL |
[71] | Sinniger F, Pawlowski J, Harii S, et al. Worldwide analysis of sedimentary DNA reveals major gaps in taxonomic knowledge of deep-sea benthos[J]. Front Mar Sci, 2016, 3:1-14. |
[72] |
Clark DE, Pilditch CA, Pearman JK, et al. Environmental DNA metabarcoding reveals estuarine benthic community response to nutrient enrichment - Evidence from an in situ experiment[J]. Environ Pollut, 2020, 267:115472.
doi: S0269-7491(20)36160-1 pmid: 32891048 |
[73] |
Xie Y, Zhang X, Yang J, et al. eDNA-based bioassessment of coastal sediments impacted by an oil spill[J]. Environ Pollut, 2018, 238:739-748.
doi: 10.1016/j.envpol.2018.02.081 URL |
[74] | 张宛宛. 基于DNA宏条形码技术的浮游植物群落多样性监测研究[D]. 南京:南京大学, 2017. |
Zhang WW. Study on biodiversity monitoring of phytoplankton community based on DNA barcoding technology[D]. Nanjing:Nanjing University, 2017. | |
[75] |
Buée M, Reich M, Murat C, et al. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity[J]. New Phytol, 2009, 184(2):449-456.
doi: 10.1111/j.1469-8137.2009.03003.x pmid: 19703112 |
[76] |
Andersen K, Bird KL, Rasmussen M, et al. Meta-barcoding of ‘dirt’ DNA from soil reflects vertebrate biodiversity[J]. Mol Ecol, 2012, 21(8):1966-1979.
doi: 10.1111/j.1365-294X.2011.05261.x pmid: 21917035 |
[77] | 于水强, 王文娟, B. Larry Li. 环境DNA技术在地下生态学中的应用[J]. 生态学报, 2015, 35(15):4968-4976. |
Yu SQ, Wang WJ, Li B. Applied environmental DNA technology to study underground ecology[J]. Acta Ecol Sin, 2015, 35(15):4968-4976. | |
[78] |
Lamb EG, Winsley T, Piper CL, et al. A high-throughput belowground plant diversity assay using next-generation sequencing of the trnL intron[J]. Plant Soil, 2016, 404(1/2):361-372.
doi: 10.1007/s11104-016-2852-y URL |
[79] | Khaliq I, Hardy GESJ, White D, et al. eDNA from roots:a robust tool for determining Phytophthora communities in natural ecosystems[J]. PFEMS Microbiol Ecol, 2018, 94(5):fiy048. |
[80] |
Singer D, Duckert C, et al. High-throughput sequencing of litter and moss eDNA reveals a positive correlation between the diversity of Apicomplexa and their invertebrate hosts across alpine habitats[J]. Soil Biol Biochem, 2020, 147:107837.
doi: 10.1016/j.soilbio.2020.107837 URL |
[81] |
Schnell IB, Thomsen PF, Wilkinson N, et al. Screening mammal biodiversity using DNA from leeches[J]. Curr Biol, 2012, 22(8):R262-R263.
doi: 10.1016/j.cub.2012.02.058 URL |
[82] |
Thomsen PF, Sigsgaard EE. Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods[J]. Ecol Evol, 2019, 9(4):1665-1679.
doi: 10.1002/ece3.2019.9.issue-4 URL |
[83] |
Yan DF, Mills JG, Gellie NJC, et al. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration[J]. Biol Conserv, 2018, 217:113-120.
doi: 10.1016/j.biocon.2017.10.035 URL |
[84] |
Wangensteen OS, Cebrian E, Palacín C, et al. Under the canopy:Community-wide effects of invasive algae in Marine Protected Areas revealed by metabarcoding[J]. Mar Pollut Bull, 2018, 127:54-66.
doi: S0025-326X(17)30990-6 pmid: 29475694 |
[85] | Smith MB, Rocha AM, Smillie CS, et al. Natural bacterial communities serve as quantitative geochemical biosensors[J]. mBio, 2015, 6(3):e00326-e00315. |
[86] |
Coelho FJ, Cleary DF, Costa R, et al. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution[J]. Mol Ecol, 2016, 25(18):4645-4659.
doi: 10.1111/mec.2016.25.issue-18 URL |
[87] |
Frontalini F, Greco M, Di Bella L, et al. Assessing the effect of mercury pollution on cultured benthic foraminifera community using morphological and eDNA metabarcoding approaches[J]. Mar Pollut Bull, 2018, 129(2):512-524.
doi: S0025-326X(17)30840-8 pmid: 29033170 |
[88] |
An C, Woo C, Yamamoto N. Introducing DNA-based methods to compare fungal microbiota and concentrations in indoor, outdoor, and personal air[J]. Aerobiologia, 2018, 34(1):1-12.
doi: 10.1007/s10453-017-9490-6 URL |
[89] |
West JS, Atkins SD, Emberlin J, et al. PCR to predict risk of airborne disease[J]. Trends Microbiol, 2008, 16(8):380-387.
doi: 10.1016/j.tim.2008.05.004 pmid: 18595713 |
[90] |
Mahaffee WF, Stoll R. The ebb and flow of airborne pathogens:monitoring and use in disease management decisions[J]. Phytopathology, 2016, 106(5):420-431.
doi: 10.1094/PHYTO-02-16-0060-RVW pmid: 27003505 |
[91] | Degois J, Clerc F, Simon X, et al. First metagenomic survey of the microbial diversity in bioaerosols emitted in waste sorting plants[J]. Ann Work Expo Health, 2017, 61(9):1076-1086. |
[92] |
Kumari P, Woo C, Yamamoto N, et al. Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons[J]. Sci Rep, 2016, 6:37929.
doi: 10.1038/srep37929 URL |
[93] |
Yang W, Guo M, et al. Detection and analysis of fine particulate matter and microbial aerosol in chicken houses in Shandong Province, China[J]. Poult Sci, 2018, 97(3):995-1005.
doi: 10.3382/ps/pex388 URL |
[94] |
Tong X, Xu H, Zou L, et al. High diversity of airborne fungi in the hospital environment as revealed by meta-sequencing-based microbiome analysis[J]. Sci Rep, 2017, 7:39606.
doi: 10.1038/srep39606 URL |
[95] |
Korpelainen H, Pietiläinen M. Biodiversity of pollen in indoor air samples as revealed by DNA metabarcoding[J]. Nord J Bot, 2017, 35(5):602-608.
doi: 10.1111/njb.01623 URL |
[96] |
Coombs K, Taft D, et al. Variability of indoor fungal microbiome of green and non-green low-income homes in Cincinnati, Ohio[J]. Sci Total Environ, 2018, 610/611:212-218.
doi: 10.1016/j.scitotenv.2017.07.274 URL |
[97] |
Deiner K, Bik HM, Mächler E, et al. Environmental DNA metabarcoding:Transforming how we survey animal and plant communities[J]. Mol Ecol, 2017, 26(21):5872-5895.
doi: 10.1111/mec.2017.26.issue-21 URL |
[98] |
Glenn TC. Field guide to next-generation DNA sequencers[J]. Mol Ecol Resour, 2011, 11(5):759-769.
doi: 10.1111/j.1755-0998.2011.03024.x URL |
[99] |
Darling JA, Mahon AR. From molecules to management:adopting DNA-based methods for monitoring biological invasions in aquatic environments[J]. Environ Res, 2011, 111(7):978-988.
doi: 10.1016/j.envres.2011.02.001 pmid: 21353670 |
[100] | Miya M, Minamoto T, Yamanaka H, et al. Use of a filter cartridge for filtration of water samples and extraction of environmental DNA[J]. JoVE, 2016(117):54741. |
[101] |
Jain M, Fiddes IT, Miga KH, et al. Improved data analysis for the MinION nanopore sequencer[J]. Nat Methods, 2015, 12(4):351-356.
doi: 10.1038/NMETH.3290 |
[102] |
Abad D, Albaina A, Aguirre M, et al. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy[J]. Mar Biol, 2016, 163(7):1-13.
doi: 10.1007/s00227-015-2782-x URL |
[103] |
Yang J, Zhang X, Xie Y, et al. Zooplankton community profiling in a eutrophic freshwater ecosystem-lake Tai basin by DNA metabarcoding[J]. Sci Rep, 2017, 7(1):1773.
doi: 10.1038/s41598-017-01808-y URL |
[104] |
Šigut M, Kostovčík M, Šigutová H, et al. Performance of DNA metabarcoding, standard barcoding, and morphological approach in the identification of host-parasitoid interactions[J]. PLoS One, 2017, 12(12):e0187803.
doi: 10.1371/journal.pone.0187803 URL |
[105] |
Ryan U, Paparini A, Oskam C. New technologies for detection of enteric parasites[J]. Trends Parasitol, 2017, 33(7):532-546.
doi: S1471-4922(17)30083-1 pmid: 28385423 |
[106] |
Shi ZY, Yang CQ, Hao MD, et al. FuzzyID2:a software package for large data set species identification via barcoding and metabarcoding using hidden Markov models and fuzzy set methods[J]. Mol Ecol Resour, 2018, 18(3):666-675.
doi: 10.1111/men.2018.18.issue-3 URL |
[107] |
Takahara T, Minamoto T, et al. Estimation of fish biomass using environmental DNA[J]. PLoS One, 2012, 7(4):e35868.
doi: 10.1371/journal.pone.0035868 URL |
[108] | Ushio M, Masayuki H, Murakami R, et al. Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing[J]. Metabarcoding and Metagenomics, 2018, 2:e23297. |
[109] |
Yamamoto S, Minami K, Fukaya K, et al. Environmental DNA as a ‘snapshot’ of fish distribution:a case study of Japanese jack mackerel in maizuru bay, sea of Japan[J]. PLoS One, 2016, 11(3):e0149786.
doi: 10.1371/journal.pone.0149786 URL |
[110] |
Raemy M, Ursenbacher S. Detection of the European pond turtle(Emys orbicularis)by environmental DNA:is eDNA adequate for reptiles?[J]. Amphibia-Reptilia, 2018, 39(2):135-143.
doi: 10.1163/15685381-17000025 URL |
[111] |
Goldberg CS, Strickler KM, Fremier AK. Degradation and dispersion limit environmental DNA detection of rare amphibians in wetlands:Increasing efficacy of sampling designs[J]. Sci Total Environ, 2018, 633:695-703.
doi: 10.1016/j.scitotenv.2018.02.295 URL |
[112] |
Elbrecht V, Leese F. Can DNA-based ecosystem assessments quantify species abundance? testing primer bias and biomass——sequence relationships with an innovative metabarcoding protocol[J]. PLoS One, 2015, 10(7):e0130324.
doi: 10.1371/journal.pone.0130324 URL |
[113] |
Coble AA, Flinders CA, Homyack JA, et al. eDNA as a tool for identifying freshwater species in sustainable forestry:a critical review and potential future applications[J]. Sci Total Environ, 2019, 649:1157-1170.
doi: 10.1016/j.scitotenv.2018.08.370 URL |
[114] | 李飞龙, 杨江华, 等. 环境DNA宏条形码监测水生态系统变化与健康状态[J]. 中国环境监测, 2018, 34(6):37-46. |
Li FL, Yang JH, et al. Using environmental DNA metabarcoding to monitor the changes and health status of aquatic ecosystems[J]. Environ Monit China, 2018, 34(6):37-46. |
[1] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
[2] | 辛亚芬, 陈晨, 曾泰儒, 杜昭昌, 倪浩然, 钟怡豪, 谭小平, 闫艳红. 青贮添加剂对微生物多样性影响的研究进展[J]. 生物技术通报, 2021, 37(9): 24-30. |
[3] | 王婷, 杨阳, 李金萍, 杜坤. 转基因作物对土壤微生物群落影响的研究进展[J]. 生物技术通报, 2021, 37(9): 255-265. |
[4] | 张颖超, 尹守亮, 王一炜, 王学凯, 杨富裕. 木本饲料青贮研究进展[J]. 生物技术通报, 2021, 37(9): 48-57. |
[5] | 姜富贵, 成海建, 魏晨, 张召坤, 苏文政, 时光, 宋恩亮. 糖蜜添加量对杂交构树青贮发酵品质和微生物多样性的影响[J]. 生物技术通报, 2021, 37(9): 68-76. |
[6] | 迪力热巴·阿不都肉苏力, 穆耶赛尔·奥斯曼, 祖力胡玛尔·肉孜, 马勤, 雷瑞峰, 安登第. 盐碱土壤微生物多样性与生物改良研究进展[J]. 生物技术通报, 2021, 37(10): 225-233. |
[7] | 黄婷, 方源, 冯舟, 沈和, 聂勇, 郑鑫, 汪家权, 许子牧. 高通量测序技术解析中学校园细菌群落的特征组成[J]. 生物技术通报, 2020, 36(8): 96-103. |
[8] | 谢宪, 梁军, 张铭, 胡瑞瑞, 程元, 张星耀. 赤松枯梢病叶内生真菌多样性研究[J]. 生物技术通报, 2020, 36(2): 119-125. |
[9] | 康捷, 章淑艳, 韩韬, 孙志梅. 麻山药不同生长时期根际土壤微生物多样性及群落结构特征[J]. 生物技术通报, 2019, 35(9): 99-106. |
[10] | 张卓, 刘茂炎, 王培, 黄文坤, 刘二明, 彭焕, 彭德良. 抗草甘膦转基因大豆AG5601对根际微生物群落功能多样性的影响[J]. 生物技术通报, 2019, 35(7): 17-24. |
[11] | 康捷,章淑艳,韩韬,孙志梅,罗同阳. 两种麻山药典型病害根际土壤微生物多样性的研究[J]. 生物技术通报, 2017, 33(7): 107-113. |
[12] | 高秀芝,易欣欣,刘慧,王晓东,崔宗均. 东北传统豆酱发酵过程中微生物的多样性[J]. 生物技术通报, 2016, 32(4): 251-255. |
[13] | 吴燕燕, 钱茜茜, 李来好 , 杨贤庆, 马海霞. 鱼类腌制品加工过程微生物群落多样性研究进展[J]. 生物技术通报, 2015, 31(7): 40-44. |
[14] | 赵洁 ,马晨 ,席晓敏, 张和平. 实时荧光定量PCR技术在肠道微生物领域中的研究进展[J]. 生物技术通报, 2014, 0(12): 61-66. |
[15] | 冯学珍 ,伍善广, 陆苑. 应用PCR-DGGE技术研究石莼、网地藻藻际微生物多样性[J]. 生物技术通报, 2014, 0(12): 73-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||