生物技术通报 ›› 2022, Vol. 38 ›› Issue (1): 311-318.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0204
吴玉苹1(), 周勇2, 蒲娟2, 李会3, 章金刚1,4, 朱艳平1
收稿日期:
2021-02-23
出版日期:
2022-01-26
发布日期:
2022-02-22
作者简介:
吴玉苹,女,博士,讲师,研究方向:药理学与食品安全;E-mail: 基金资助:
WU Yu-ping1(), ZHOU Yong2, PU Juan2, LI Hui3, ZHANG Jin-gang1,4, ZHU Yan-ping1
Received:
2021-02-23
Published:
2022-01-26
Online:
2022-02-22
摘要:
肿瘤是一种多因素参与造成机体各系统功能平衡紊乱的代谢性疾病,代谢重编程是恶性肿瘤的重要特征之一。研究“代谢指纹图谱”的代谢组学,通过揭示肿瘤或药物引起的宿主内源性代谢物的变化,为肿瘤药物靶点的筛选提供了可能。但目前对代谢组在肿瘤药物靶点筛选中的整体性综述并不多见,因此,本文在介绍了代谢组学筛选肿瘤药物靶点的流程的基础上,然后依次对代谢组学在糖代谢、氨基酸代谢、脂质代谢等能量领域中肿瘤药物靶点筛选及其在揭示肿瘤耐药机制和靶向药物筛选中的应用进行了阐述,最后对代谢组学在肿瘤药物靶点研究中存在的问题以及未来发展趋势进行了探讨,以期为深入研究理解代谢组学在肿瘤机制和药物靶点发现中的重要作用提供参考和科学依据。
吴玉苹, 周勇, 蒲娟, 李会, 章金刚, 朱艳平. 代谢组学在肿瘤药物靶点筛选中的应用进展[J]. 生物技术通报, 2022, 38(1): 311-318.
WU Yu-ping, ZHOU Yong, PU Juan, LI Hui, ZHANG Jin-gang, ZHU Yan-ping. Application Progress of Metabolomics in Tumor Drug Target Screening[J]. Biotechnology Bulletin, 2022, 38(1): 311-318.
[1] |
Tweeddale H, Notley-McRobb L, Ferenci T. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool(“metabolome”)analysis[J]. J Bacteriol, 1998, 180(19):5109-5116.
pmid: 9748443 |
[2] |
Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’:understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11):1181-1189.
pmid: 10598751 |
[3] | Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487):eaaw5473. |
[4] | Zhang AH, Sun H, Yan GL, et al. Metabolomics study of type 2 diabetes using ultra-performance LC-ESI/quadrupole-TOF high-definition MS coupled with pattern recognition methods[J]. J Physiol Biochem, 2014, 70(1):117-128. |
[5] |
Armitage EG, Barbas C. Metabolomics in cancer biomarker discovery:current trends and future perspectives[J]. J Pharm Biomed Anal, 2014, 87:1-11.
doi: 10.1016/j.jpba.2013.08.041 pmid: 24091079 |
[6] |
Fillet M, Frédérich M. The emergence of metabolomics as a key discipline in the drug discovery process[J]. Drug Discov Today Technol, 2015, 13:19-24.
doi: 10.1016/j.ddtec.2015.01.006 URL |
[7] |
Patti GJ, Yanes O, Siuzdak G. Innovation:Metabolomics:the apogee of the omics trilogy[J]. Nat Rev Mol Cell Biol, 2012, 13(4):263-269.
doi: 10.1038/nrm3314 URL |
[8] |
Pandey R, Caflisch L, Lodi A, et al. Metabolomic signature of brain cancer[J]. Mol Carcinog, 2017, 56(11):2355-2371.
doi: 10.1002/mc.22694 URL |
[9] |
Lee JY. Book Review:Cancer as a metabolic disease:on the origin, management, and prevention of cancer[J]. J Gynecol Oncol, 2014, 25(3):260.
doi: 10.3802/jgo.2014.25.3.260 URL |
[10] |
Wang X, Liu R, Zhu W, et al. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis[J]. Nature, 2019, 571(7763):127-131.
doi: 10.1038/s41586-019-1340-y URL |
[11] |
Satoh K, Yachida S, Sugimoto M, et al. Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC[J]. PNAS, 2017, 114(37):E7697-E7706.
doi: 10.1073/pnas.1710366114 URL |
[12] |
Frédérich M, Pirotte B, Fillet M, et al. Metabolomics as a challenging approach for medicinal chemistry and personalized medicine[J]. J Med Chem, 2016, 59(19):8649-8666.
pmid: 27295417 |
[13] |
Lu J, Tan M, Cai Q. The Warburg effect in tumor progression:mitochondrial oxidative metabolism as an anti-metastasis mechanism[J]. Cancer Lett, 2015, 356(2 pt a):156-164.
doi: 10.1016/j.canlet.2014.04.001 URL |
[14] |
Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology:a review[J]. Clin Cancer Res, 2009, 15(2):431-440.
doi: 10.1158/1078-0432.CCR-08-1059 URL |
[15] |
Yumba Mpanga A, Siluk D, Jacyna J, et al. Targeted metabolomics in bladder cancer:From analytical methods development and validation towards application to clinical samples[J]. Anal Chim Acta, 2018, 1037:188-199.
doi: 10.1016/j.aca.2018.01.055 URL |
[16] |
Wang ZZ, Cui BB, Zhang F, et al. Development of a correlative strategy to discover colorectal tumor tissue derived metabolite biomarkers in plasma using untargeted metabolomics[J]. Anal Chem, 2019, 91(3):2401-2408.
doi: 10.1021/acs.analchem.8b05177 URL |
[17] |
Chen X, Yu DS. Metabolomics study of oral cancers[J]. Metabolomics, 2019, 15(2):22.
doi: 10.1007/s11306-019-1483-8 pmid: 30830419 |
[18] |
Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine[J]. Nat Rev Drug Discov, 2016, 15(7):473-484.
doi: 10.1038/nrd.2016.32 pmid: 26965202 |
[19] |
Sukumar M, Roychoudhuri R, Restifo NP. Nutrient competition:a new axis of tumor immunosuppression[J]. Cell, 2015, 162(6):1206-1208.
doi: 10.1016/j.cell.2015.08.064 URL |
[20] |
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect:the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930):1029-1033.
doi: 10.1126/science.1160809 URL |
[21] |
Yuan M, Breitkopf SB, Yang X, et al. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue[J]. Nat Protoc, 2012, 7(5):872-881.
doi: 10.1038/nprot.2012.024 pmid: 22498707 |
[22] |
Bhanot H, Reddy MM, Nonami A, et al. Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells[J]. Leukemia, 2015, 29(7):1555-1563.
doi: 10.1038/leu.2015.46 URL |
[23] |
Gao P, Yang C, Nesvick CL, et al. Hypotaurine evokes a malignant phenotype in glioma through aberrant hypoxic signaling[J]. Oncotarget, 2016, 7(12):15200-15214.
doi: 10.18632/oncotarget.v7i12 URL |
[24] |
Zhu B, Wei H, Wang Q, et al. A simultaneously quantitative method to profiling twenty endogenous nucleosides and nucleotides in cancer cells using UHPLC-MS/MS[J]. Talanta, 2018, 179:615-623.
doi: 10.1016/j.talanta.2017.11.054 URL |
[25] |
Gao X, Sanderson SM, Dai Z, et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism[J]. Nature, 2019, 572(7769):397-401.
doi: 10.1038/s41586-019-1437-3 URL |
[26] |
Eaton JK, Furst L, Ruberto RA, et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles[J]. Nat Chem Biol, 2020, 16(5):497-506.
doi: 10.1038/s41589-020-0501-5 pmid: 32231343 |
[27] | Zhang W, Liu W, Jia L, et al. Targeting KDM4A epigenetically activates tumor-cell-intrinsic immunity by inducing DNA replication stress[J]. Mol Cell, 2021, 81(10):2148-2165. e9. |
[28] |
Visweswaran M, Arfuso F, Warrier S, et al. Aberrant lipid metabolism as an emerging therapeutic strategy to target cancer stem cells[J]. Stem Cells, 2020, 38(1):6-14.
doi: 10.1002/stem.3101 pmid: 31648395 |
[29] |
Stoykova GE, Schlaepfer IR. Lipid metabolism and endocrine resistance in prostate cancer, and new opportunities for therapy[J]. Int J Mol Sci, 2019, 20(11):2626.
doi: 10.3390/ijms20112626 URL |
[30] |
Camarda R, Zhou AY, Kohnz RA, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer[J]. Nat Med, 2016, 22(4):427-432.
doi: 10.1038/nm.4055 pmid: 26950360 |
[31] |
Zadra G, Ribeiro CF, Chetta P, et al. Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer[J]. PNAS, 2019, 116(2):631-640.
doi: 10.1073/pnas.1808834116 URL |
[32] |
Kimmelman AC, White E. Autophagy and tumor metabolism[J]. Cell Metab, 2017, 25(5):1037-1043.
doi: S1550-4131(17)30209-7 pmid: 28467923 |
[33] |
Cheong H. Integrating autophagy and metabolism in cancer[J]. Arch Pharm Res, 2015, 38(3):358-371.
doi: 10.1007/s12272-015-0562-2 URL |
[34] |
Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth[J]. Nat Cell Biol, 2015, 17(4):351-359.
doi: 10.1038/ncb3124 pmid: 25774832 |
[35] |
Lu SY, Lu RG, Song H, et al. Metabolomic study of natrin-induced apoptosis in SMMC-7721 hepatocellular carcinoma cells by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry[J]. Int J Biol Macromol, 2019, 124:1264-1273.
doi: 10.1016/j.ijbiomac.2018.11.060 URL |
[36] |
Cao B, Li M, Zha W, et al. Metabolomic approach to evaluating adriamycin pharmacodynamics and resistance in breast cancer cells[J]. Metabolomics, 2013, 9(5):960-973.
doi: 10.1007/s11306-013-0517-x URL |
[37] | Wang TY, Fahrmann JF, Lee H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance[J]. Cell Metab, 2018, 27(6):1357. |
[38] |
Sun H, Zhang AH, Liu SB, et al. Cell metabolomics identify regulatory pathways and targets of magnoline against prostate cancer[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1102/1103:143-151.
doi: 10.1016/j.jchromb.2018.10.017 URL |
[39] |
Ma C, Li Y, Wu H, et al. Metabolomics analysis of the potential anticancer mechanism of annonaceous acetogenins on a multidrug resistant mammary adenocarcinoma cell[J]. Anal Biochem, 2018, 553:1-6.
doi: 10.1016/j.ab.2018.04.022 URL |
[40] |
Jaiswal S, Kumar M, Mandeep, et al. Systems biology approaches for therapeutics development against COVID-19[J]. Front Cell Infect Microbiol, 2020, 10:560240.
doi: 10.3389/fcimb.2020.560240 URL |
[41] |
Misra BB, Langefeld C, Olivier M, et al. Integrated omics:tools, advances and future approaches[J]. J Mol Endocrinol, 2019, 62(1):R21-R45.
doi: 10.1530/JME-18-0055 URL |
[42] |
Vazquez A, Kamphorst JJ, Markert EK, et al. Cancer metabolism at a glance[J]. J Cell Sci, 2016, 129(18):3367-3373.
doi: 10.1242/jcs.181016 pmid: 27635066 |
[43] |
Vitale I, Manic G, Coussens LM, et al. Macrophages and metabolism in the tumor microenvironment[J]. Cell Metab, 2019, 30(1):36-50.
doi: S1550-4131(19)30304-3 pmid: 31269428 |
[44] |
Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance:a major contributor to minimal residual disease[J]. Nat Rev Cancer, 2009, 9(9):665-674.
doi: 10.1038/nrc2714 pmid: 19693095 |
[45] |
Li X, Wenes M, Romero P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(7):425-441.
doi: 10.1038/s41571-019-0203-7 URL |
[1] | 周璐祺, 崔婷茹, 郝楠, 赵雨薇, 赵斌, 刘颖超. 化学蛋白质组学在天然产物分子靶标鉴定中的应用[J]. 生物技术通报, 2023, 39(9): 12-26. |
[2] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[3] | 韩华蕊, 杨宇琭, 门艺涵, 韩尚玲, 韩渊怀, 霍轶琼, 侯思宇. 基于代谢组学研究谷子SiYABBYs参与花发育过程中鼠李糖苷的生物合成[J]. 生物技术通报, 2023, 39(6): 189-198. |
[4] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[5] | 陈英, 王艺磊, 邹鹏飞. 大黄鱼TRAF6的克隆及表达分析[J]. 生物技术通报, 2022, 38(8): 233-243. |
[6] | 古丽加马力·艾萨, 邢军, 李安, 张瑞. 开菲尔粒中微生物对苯并(α)芘的非靶向代谢组学分析[J]. 生物技术通报, 2022, 38(5): 123-135. |
[7] | 杨玉萍, 张霞, 王翀翀, 王晓艳. 不同年龄大鼠尿液代谢组学研究[J]. 生物技术通报, 2022, 38(2): 166-172. |
[8] | 张小妮, 翁伊纯, 范奕浩, 王晓娟, 赵佳宇, 张云龙. Mito-OS-Timer:一种靶向监测线粒体氧化应激的荧光秒表[J]. 生物技术通报, 2022, 38(10): 97-105. |
[9] | 张凤, 陈伟. 代谢组学在植物逆境生物学中的研究进展[J]. 生物技术通报, 2021, 37(8): 1-11. |
[10] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[11] | 李平, 胡建燃, 史宝忠, 赵晶磊. 黄芩多糖的提取及其抗氧化和抗肿瘤活性研究[J]. 生物技术通报, 2021, 37(4): 155-163. |
[12] | 田鹤, 税光厚. 基于质谱技术的代谢组学分析方法研究进展[J]. 生物技术通报, 2021, 37(1): 24-32. |
[13] | 殷志斌, 黄文洁, 伍欣宙, 晏石娟. 空间分辨代谢组学进展和挑战[J]. 生物技术通报, 2021, 37(1): 32-51. |
[14] | 黄小丹, 陈梦雨, 黄文洁, 张名位, 晏石娟. 基于代谢组学的植物多酚及其肠道健康效应研究进展[J]. 生物技术通报, 2021, 37(1): 123-136. |
[15] | 尹晓梦, 曹雪玮, 王富军, 赵健, 张惠展. 雷公藤红素与凋亡蛋白突变体通过强化Nur77诱发凋亡通路发挥协同抗肿瘤作用[J]. 生物技术通报, 2020, 36(7): 119-129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||