生物技术通报 ›› 2022, Vol. 38 ›› Issue (2): 245-251.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0975
董海娇1,2(), 杨晓玉3, 莫蓓莘1, 陈雪梅4, 崔洁1()
收稿日期:
2021-07-30
出版日期:
2022-02-26
发布日期:
2022-03-09
作者简介:
董海娇,女,博士,研究方向:植物表观遗传学;E-mail: 基金资助:
DONG Hai-jiao1,2(), YANG Xiao-yu3, MO Bei-xin1, CHEN Xue-mei4, CUI Jie1()
Received:
2021-07-30
Published:
2022-02-26
Online:
2022-03-09
摘要:
m7G帽子具有保护RNA不被降解以及招募相关蛋白参与内含子剪切、poly(A)加尾、出核和翻译等功能。一直以来,它被认为是真核生物mRNA所特有的修饰类型。然而近年来,在包括原核生物在内的多个物种中均检测到一种新的RNA 5'端修饰,即核酸代谢物烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)帽子。目前NAD+修饰RNA(NAD-RNA)的生物学功能研究仍处于起始阶段。本文概述了NAD-RNA的发现及其检测和鉴定技术的发展;探讨了NAD+帽子对RNA的调控功能,以及NAD-RNA脱帽和加帽的影响因素;并进一步推测NAD-RNA在生物的生长、发育和环境响应中发挥的潜在功能。最后,展望了未来NAD-RNA的研究方向和主题。
董海娇, 杨晓玉, 莫蓓莘, 陈雪梅, 崔洁. 核糖核酸5'端NAD+帽子修饰研究进展[J]. 生物技术通报, 2022, 38(2): 245-251.
DONG Hai-jiao, YANG Xiao-yu, MO Bei-xin, CHEN Xue-mei, CUI Jie. Research Progress in NAD+ Cap Modification at the 5' End of RNA[J]. Biotechnology Bulletin, 2022, 38(2): 245-251.
[1] | Julius C, Yuzenkova Y. Noncanonical RNA-capping:Discovery, mechanism, and physiological role debate[J]. Wiley Interdiscip Rev RNA, 2019, 10(2):e1512. |
[2] |
Liu SR, Hu CG, Zhang JZ. Regulatory effects of cotranscriptional RNA structure formation and transitions[J]. Wiley Interdiscip Rev RNA, 2016, 7(5):562-574.
doi: 10.1002/wrna.1350 URL |
[3] |
Kadumuri RV, et al. Epitranscriptomic code and its alterations in human disease[J]. Trends Mol Med, 2018, 24(10):886-903.
doi: 10.1016/j.molmed.2018.07.010 URL |
[4] |
Machnicka MA, Milanowska K, Osman Oglou O, et al. MODOMICS:a database of RNA modification pathways——2013 update[J]. Nucleic Acids Res, 2013, 41(database issue):D262-D267.
doi: 10.1093/nar/gks1007 URL |
[5] |
Gilbert WV, et al. Messenger RNA modifications:Form, distribution, and function[J]. Science, 2016, 352(6292):1408-1412.
doi: 10.1126/science.aad8711 pmid: 27313037 |
[6] |
Roundtree IA, Evans ME, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017, 169(7):1187-1200.
doi: S0092-8674(17)30638-4 pmid: 28622506 |
[7] |
Yu X, Sharma B, Gregory BD. The impact of epitranscriptomic marks on post-transcriptional regulation in plants[J]. Brief Funct Genomics, 2021, 20(2):113-124.
doi: 10.1093/bfgp/elaa021 URL |
[8] |
Ramanathan A, et al. mRNA capping:biological functions and applications[J]. Nucleic Acids Res, 2016, 44(16):7511-7526.
doi: 10.1093/nar/gkw551 pmid: 27317694 |
[9] |
Topisirovic I, Svitkin YV, Sonenberg N, et al. Cap and cap-binding proteins in the control of gene expression[J]. Wiley Interdiscip Rev RNA, 2011, 2(2):277-298.
doi: 10.1002/wrna.52 URL |
[10] |
Deana A, Celesnik H, Belasco JG. The bacterial enzyme RppH triggers messenger RNA degradation by 5' pyrophosphate removal[J]. Nature, 2008, 451(7176):355-358.
doi: 10.1038/nature06475 URL |
[11] |
Chen YG, Kowtoniuk WE, Agarwal I, et al. LC/MS analysis of cellular RNA reveals NAD-linked RNA[J]. Nat Chem Biol, 2009, 5(12):879-881.
doi: 10.1038/nchembio.235 URL |
[12] |
Kowtoniuk WE, Shen YH, Heemstra JM, et al. A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA[J]. PNAS, 2009, 106(19):7768-7773.
doi: 10.1073/pnas.0900528106 pmid: 19416889 |
[13] |
Wang J, Alvin Chew BL, Lai Y, et al. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA[J]. Nucleic Acids Res, 2019, 47(20):e130.
doi: 10.1093/nar/gkz751 URL |
[14] |
Wang Y, Li S, Zhao Y, et al. NAD+-capped RNAs are widespread in the Arabidopsis transcriptome and can probably be translated[J]. PNAS, 2019, 116(24):12094-12102.
doi: 10.1073/pnas.1903682116 URL |
[15] |
Cahová H, Winz ML, Höfer K, et al. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs[J]. Nature, 2015, 519(7543):374-377.
doi: 10.1038/nature14020 URL |
[16] |
Winz ML, Cahová H, Nübel G, et al. Capture and sequencing of NAD-capped RNA sequences with NAD captureSeq[J]. Nat Protoc, 2017, 12(1):122-149.
doi: 10.1038/nprot.2016.163 URL |
[17] |
Harden A, Young W J. The alcoholic ferment of yeast-juice. Part II. —The coferment of yeast-juice[J]. Proc R Soc Lond B, 1906, 78(526):369-375.
doi: 10.1098/rspb.1906.0070 URL |
[18] | Sultani G, Samsudeen AF, Osborne B, et al. NAD+:a key metabolic regulator with great therapeutic potential[J]. J Neuroendocrinol, 2017, 29(10):e12508. |
[19] |
Grudzien-Nogalska E, Bird JG, et al. “NAD-capQ” detection and quantitation of NAD caps[J]. RNA, 2018, 24(10):1418-1425.
doi: 10.1261/rna.067686.118 pmid: 30045887 |
[20] |
Houtkooper RH, Cantó C, Wanders RJ, et al. The secret life of NAD+:an old metabolite controlling new metabolic signaling pathways[J]. Endocr Rev, 2010, 31(2):194-223.
doi: 10.1210/er.2009-0026 pmid: 20007326 |
[21] |
Xie N, Zhang L, Gao W, et al. NAD+ metabolism:pathophysiologic mechanisms and therapeutic potential[J]. Signal Transduct Target Ther, 2020, 5:227.
doi: 10.1038/s41392-020-00311-7 pmid: 33028824 |
[22] |
Frindert J, Zhang Y, Nübel G, et al. Identification, biosynjournal, and decapping of NAD-capped RNAs in B. subtilis[J]. Cell Rep, 2018, 24(7):1890-1901. e8.
doi: S2211-1247(18)31150-1 pmid: 30110644 |
[23] | Jiao XF, Doamekpor SK, Bird JG, et al. 5' end nicotinamide adenine dinucleotide cap in human cells promotes RNA decay through DXO-mediated deNADding[J]. Cell, 2017, 168(6):1015-1027. e10. |
[24] |
Walters RW, Matheny T, Mizoue LS, et al. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae[J]. PNAS, 2017, 114(3):480-485.
doi: 10.1073/pnas.1619369114 pmid: 28031484 |
[25] |
Grudzien-Nogalska E, Wu Y, Jiao X, et al. Structural and mechanistic basis of mammalian Nudt12 RNA deNADding[J]. Nat Chem Biol, 2019, 15(6):575-582.
doi: 10.1038/s41589-019-0293-7 pmid: 31101919 |
[26] | Hu H, Flynn N, Zhang HL, et al. SPAAC-NAD-seq, a sensitive and accurate method to profile NAD+-capped transcripts[J]. PNAS, 2021, 118(13):e2025595118. |
[27] |
Yu X, Willmann MR, Vandivier LE, et al. Messenger RNA 5' NAD+ capping is a dynamic regulatory epitranscriptome mark that is required for proper response to abscisic acid in Arabidopsis[J]. Dev Cell, 2021, 56(1):125-140. e6.
doi: 10.1016/j.devcel.2020.11.009 URL |
[28] | Zhang HL, Zhong H, Wang XF, et al. Use of NAD tagSeq II to identify growth phase-dependent alterations in E. coli RNA NAD+ capping[J]. PNAS, 2021, 118(14):e2026183118. |
[29] |
Zhang H, et al. NAD tagSeq reveals that NAD+-capped RNAs are mostly produced from a large number of protein-coding genes in Arabidopsis[J]. PNAS, 2019, 116(24):12072-12077.
doi: 10.1073/pnas.1903683116 URL |
[30] |
Shao X, Zhang H, Yang Z, et al. NAD tagSeq for transcriptome-wide identification and characterization of NAD+-capped RNAs[J]. Nat Protoc, 2020, 15(9):2813-2836.
doi: 10.1038/s41596-020-0363-z URL |
[31] |
Stark R, Grzelak M, Hadfield J. RNA sequencing:the teenage years[J]. Nat Rev Genet, 2019, 20(11):631-656.
doi: 10.1038/s41576-019-0150-2 pmid: 31341269 |
[32] | Kramer MC, Janssen KA, Palos K, et al. N6-methyladenosine and RNA secondary structure affect transcript stability and protein abundance during systemic salt stress in Arabidopsis[J]. Plant Direct, 2020, 4(7):e00239. |
[33] |
Kiledjian M. Eukaryotic RNA 5'-end NAD+ capping and DeNADding[J]. Trends Cell Biol, 2018, 28(6):454-464.
doi: 10.1016/j.tcb.2018.02.005 URL |
[34] |
Ghosh A, Lima CD. Enzymology of RNA cap synjournal[J]. Wiley Interdiscip Rev RNA, 2010, 1(1):152-172.
doi: 10.1002/wrna.v1:1 URL |
[35] |
Martinez-Rucobo FW, Kohler R, van de Waterbeemd M, et al. Molecular basis of transcription-coupled pre-mRNA capping[J]. Mol Cell, 2015, 58(6):1079-1089.
doi: 10.1016/j.molcel.2015.04.004 pmid: 25959396 |
[36] | Shuman S. Structure, mechanism, and evolution of the mRNA capping apparatus[M]// Progress in nucleic acid research and molecular biology. Amsterdam:Elsevier, 2000:1-40. |
[37] |
Shuman S. RNA capping:progress and prospects[J]. RNA, 2015, 21(4):735-737.
doi: 10.1261/rna.049973.115 URL |
[38] |
Bird JG, Zhang Y, Tian Y, et al. The mechanism of RNA 5' capping with NAD+, NADH and desphospho-CoA[J]. Nature, 2016, 535(7612):444-447.
doi: 10.1038/nature18622 URL |
[39] |
Julius C, Yuzenkova Y. Bacterial RNA polymerase caps RNA with various cofactors and cell wall precursors[J]. Nucleic Acids Res, 2017, 45(14):8282-8290.
doi: 10.1093/nar/gkx452 URL |
[40] |
Bird JG, Basu U, Kuster D, et al. Highly efficient 5' capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase[J]. eLife, 2018, 7:e42179.
doi: 10.7554/eLife.42179 URL |
[41] |
Vvedenskaya IO, Bird JG, Zhang Y, et al. CapZyme-seq comprehensively defines promoter-sequence determinants for RNA 5' capping with NAD[J]. Mol Cell, 2018, 70(3):553-564. e9.
doi: S1097-2765(18)30217-X pmid: 29681497 |
[42] |
Dieci G, et al. Eukaryotic snoRNAs:a paradigm for gene expression flexibility[J]. Genomics, 2009, 94(2):83-88.
doi: 10.1016/j.ygeno.2009.05.002 URL |
[43] |
Filipowicz W, Pogacić V. Biogenesis of small nucleolar ribonucleoproteins[J]. Curr Opin Cell Biol, 2002, 14(3):319-327.
pmid: 12067654 |
[44] |
Kawaji H, Nakamura M, Takahashi Y, et al. Hidden layers of human small RNAs[J]. BMC Genomics, 2008, 9:157.
doi: 10.1186/1471-2164-9-157 URL |
[45] |
Jiao X, Chang JH, et al. A mammalian pre-mRNA 5' end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing[J]. Mol Cell, 2013, 50(1):104-115.
doi: 10.1016/j.molcel.2013.02.017 URL |
[46] |
Bouvier M, Carpousis AJ. A tale of two mRNA degradation pathways mediated by RNase E[J]. Mol Microbiol, 2011, 82(6):1305-1310.
doi: 10.1111/j.1365-2958.2011.07894.x pmid: 22074454 |
[47] | Grudzien-Nogalska E, Kiledjian M. New insights into decapping enzymes and selective mRNA decay[J]. WIREs RNA, 2017, 8(1):e1379. |
[48] |
Sharma S, Grudzien-Nogalska E, Hamilton K, et al. Mammalian Nudix proteins cleave nucleotide metabolite caps on RNAs[J]. Nucleic Acids Res, 2020, 48(12):6788-6798.
doi: 10.1093/nar/gkaa402 pmid: 32432673 |
[49] |
Abele F, Höfer K, Bernhard P, et al. A novel NAD-RNA decapping pathway discovered by synthetic light-up NAD-RNAs[J]. Biomolecules, 2020, 10(4):513.
doi: 10.3390/biom10040513 URL |
[1] | 赵杰, 李安, 梁刚, 靳欣欣, 潘立刚. 植物环状RNA的研究新进展[J]. 生物技术通报, 2022, 38(10): 1-9. |
[2] | 王志山, 黎妮, 王伟平, 刘洋. 水稻种子内生细菌研究进展[J]. 生物技术通报, 2022, 38(1): 236-246. |
[3] | 贺小丽, 郭磊周, 韩佳慧, 唐殷, 袁媛, 代其林, 平淑珍, 江世杰. 细菌周质分子伴侣LolA研究进展[J]. 生物技术通报, 2021, 37(8): 275-283. |
[4] | 薛翔澜, 丁洋洋, 刘悦, 李晓波, 蒋琳, 何晓红, 马月辉, 赵倩君. 哺乳动物m6A与生长发育相关生物学功能研究进展[J]. 生物技术通报, 2021, 37(4): 251-259. |
[5] | 郑叶子, 王丹, 潘咪, 王艳玲, 安丽君. 拟南芥GLABROUS 1两个新等位突变体的筛选和鉴定[J]. 生物技术通报, 2021, 37(2): 15-23. |
[6] | 冯逸龙, 张文利. DNA鸟嘌呤四联体研究进展[J]. 生物技术通报, 2020, 36(7): 23-31. |
[7] | 黄幸, 丁峰, 彭宏祥, 潘介春, 何新华, 徐炯志, 李琳. 植物WRKY转录因子家族研究进展[J]. 生物技术通报, 2019, 35(12): 129-143. |
[8] | 王春雨, 张茜. 植物NAC转录因子功能研究进展[J]. 生物技术通报, 2018, 34(11): 8-14. |
[9] | 徐海冬, 冷奇颖, PATRICIAAdu-Asiamah, 王章, 李婷, 张丽. 环状RNA的特征及其在畜禽中的研究进展[J]. 生物技术通报, 2018, 34(11): 56-69. |
[10] | 谭玉荣, 王丹, 高璇, 刘进平. 植物长链非编码RNA研究进展[J]. 生物技术通报, 2018, 34(10): 1-10. |
[11] | 罗燕,刘小刚,周志钦. 植物糖基转移酶基因的分离方法及其生物学功能研究进展[J]. 生物技术通报, 2016, 32(12): 34-39. |
[12] | 牛旭龙, 冯万军, 马金虎, 邢国芳. 植物长链非编码RNA功能研究进展[J]. 生物技术通报, 2015, 31(6): 1-7. |
[13] | 姜珊珊, 张丹, 孔祥培, 周严, 李德全. 植物中的钙依赖蛋白激酶(CDPK)的结构特征和功能研究进展[J]. 生物技术通报, 2013, 0(6): 12-19. |
[14] | 谭亚清, 刘德虎. 人酸性成纤维细胞生长因子的研究进展[J]. 生物技术通报, 2013, 0(5): 22-27. |
[15] | 史梦雅;李阳;张巍;刘悦萍;. 生长素反应因子作用机制研究进展[J]. , 2012, 0(08): 24-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||