生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 178-185.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1117
收稿日期:
2021-08-30
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
洪天澍,男,硕士研究生,研究方向:生物化学与分子生物学;E-mail: 基金资助:
HONG Tian-shu1(), HAI Ying2, ENHE Ba-ya-er1, GAO Feng1()
Received:
2021-08-30
Published:
2022-07-26
Online:
2022-08-09
摘要:
ABC转运蛋白,是一类功能广泛的具有主动介导多种分子转运的蛋白质,但在甜瓜(Cucumis melo L.)中的研究尚不清楚。本文通过生物信息学方法分析了ABC转运蛋白亚家族G成员CmABCG8的特点,同时使用荧光定量PCR检测了CmABCG8的不同时期果实、不同组织表达特性及对逆境胁迫的响应情况。进化树结果表明CmABCG8与黄瓜CsABCG23的亲缘关系最近,CmABCG8在甜瓜各组织中均有表达,在雌蕊和叶中表达量较高,CmABCG8有10个相互作用蛋白质。RT-qPCR结果表明,在果实不同时期的表达量中,CmABCG8在10 d时表达量最高;在甜瓜不同组织中,CmABCG8在叶子中表达量最高;分别用细胞分裂素、油菜素内酯、过氧化氢处理后,随着处理浓度的增加,CmABCG8的表达量均呈上升趋势;在铁、铜、锰3种金属离子处理后,CmABCG8的表达量呈下降趋势,因此分析其在甜瓜果实发育前期有一定影响,并对植物激素及金属离子有不同程度的响应,植物激素能够有效诱导CmABCG8的表达。
洪天澍, 海英, 恩和巴雅尔, 高峰. 甜瓜CmABCG8基因的表达特性分析[J]. 生物技术通报, 2022, 38(7): 178-185.
HONG Tian-shu, HAI Ying, ENHE Ba-ya-er, GAO Feng. Analysis of Expression Characteristics of CmABCG8 Gene in Cucumis melo L.[J]. Biotechnology Bulletin, 2022, 38(7): 178-185.
图1 CmABCG8和拟南芥、番茄、黄瓜、甜瓜中ABCG基因的系统进化树
Fig.1 Phylogenetic trees of ABCG genes in CmABCG8 and Arabidopsis thaliana,tomato(Solanum lycopersic-um),cucumber(Cucumis sativus L.)and melon(Cucumis melo L.)
图5 甜瓜不同组织中CmABCG8基因的相对表达量 图中误差线表示标准偏差;星号代表显著差异(*P<0.05,** P <0.01);下同
Fig.5 Relative expressions of CmABCG8 gene in the different tissues of melon The error line in the figure refers to the standard deviation;and * indicates significant difference(*P<0.05 and ** P <0.01). The same below
图6 植物激素和H2O2处理对CmABCG8基因表达特性的影响 A:细胞分裂素处理;B:油菜素内酯处理;C:过氧化氢处理
Fig.6 Effects of plant hormones and H2O2 treatment on the expression characteristics of CmABCG8 gene A:Cytokinin treatment. B:Brassinosteroid treatment. C:Hydrogen peroxide treatment
图7 不同金属离子处理对CmABCG8基因表达特性的影响 A:Fe2+处理;B:Cu2+处理;C:Mn2+处理
Fig.7 Effects of different metal ion treatment on the expression characteristics of CmABCG8 gene A:Fe2+ treatment. B:Cu2+ treatment. C:Mn2+ treatment
[1] |
Higgins CF. ABC transporters:from microorganisms to man[J]. Annu Rev Cell Biol, 1992, 8:67-113.
pmid: 1282354 |
[2] | 王晓珠, 孙万梅, 马义峰, 等. 拟南芥ABC转运蛋白研究进展[J]. 植物生理学报, 2017, 53(2):133-144. |
Wang XZ, Sun WM, Ma YF, et al. Research progress of ABC transporters in Arabidopsis thaliana[J]. Plant Physiol J, 2017, 53(2):133-144. | |
[3] |
Rea PA. Plant ATP-binding cassette transporters[J]. Annu Rev Plant Biol, 2007, 58:347-375.
doi: 10.1146/annurev.arplant.57.032905.105406 URL |
[4] |
Verrier PJ, Bird D, Burla B, et al. Plant ABC proteins—a unified nomenclature and updated inventory[J]. Trends Plant Sci, 2008, 13(4):151-159.
doi: 10.1016/j.tplants.2008.02.001 URL |
[5] | Zhao GC, Shi JX, Liang WQ, et al. Two ATP binding cassette G transporters, rice ATP binding cassette G26 and ATP binding cassette G15, collaboratively regulate rice male reproduction[J]. Plant Physiol, 2015, 169(3):2064-2079. |
[6] |
Gräfe K, Schmitt L. The ABC transporter G subfamily in Arabidopsis thaliana[J]. J Exp Bot, 2021, 72(1):92-106.
doi: 10.1093/jxb/eraa260 URL |
[7] |
Borghi L, Kang J, Ko D, et al. The role of ABCG-type ABC transporters in phytohormone transport[J]. Biochem Soc Trans, 2015, 43(5):924-930.
doi: 10.1042/BST20150106 URL |
[8] |
Kim DY, Bovet L, Maeshima M, et al. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance[J]. Plant J, 2007, 50(2):207-218.
doi: 10.1111/j.1365-313X.2007.03044.x URL |
[9] |
Stein M, Dittgen J, Sánchez-Rodríguez C, et al. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration[J]. Plant Cell, 2006, 18(3):731-746.
doi: 10.1105/tpc.105.038372 URL |
[10] |
Ukitsu H, Kuromori T, Toyooka K, et al. Cytological and biochemical analysis of COF1, an Arabidopsis mutant of an ABC transporter gene[J]. Plant Cell Physiol, 2007, 48(11):1524-1533.
doi: 10.1093/pcp/pcm139 URL |
[11] |
Mentewab A, Stewart CN Jr. Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants[J]. Nat Biotechnol, 2005, 23(9):1177-1180.
pmid: 16116418 |
[12] |
Pighin JA, Zheng HQ, Balakshin LJ, et al. Plant cuticular lipid export requires an ABC transporter[J]. Science, 2004, 306(5696):702-704.
pmid: 15499022 |
[13] |
Kuromori T, Miyaji T, Yabuuchi H, et al. ABC transporter AtABCG25 is involved in abscisic acid transport and responses[J]. Proc Natl Acad Sci USA, 2010, 107(5):2361-2366.
doi: 10.1073/pnas.0912516107 URL |
[14] |
McFarlane HE, Shin JJH, Bird DA, et al. Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations[J]. Plant Cell, 2010, 22(9):3066-3075.
doi: 10.1105/tpc.110.077974 URL |
[15] |
Dean M, Hamon Y, Chimini G. The human ATP-binding cassette(ABC)transporter superfamily[J]. J Lipid Res, 2001, 42(7):1007-1017.
pmid: 11441126 |
[16] |
贾凯杰, 时梦, Rizwan HM,等. 百香果ABC转运蛋白基因家族的生物信息学及表达模式[J/OL]. 应用与环境生物学报, 2021. DOI: 10,19675/j.cnki.1006-687x,2020.12012..
doi: 10,19675/j.cnki.1006-687x,2020.12012. |
Jia KJ, Shi M, Rizwan HM, et al. Bioinformatics and expression analysis of ABC transporter gene family in passion fruit[J]. Chinese Journal of Applied and Environmental Biology, 2021. DOI: 10,19675/j.cnki.1006-687x,2020.12012..
doi: 10,19675/j.cnki.1006-687x,2020.12012. |
|
[17] |
Xiong HC, Kobayashi T, Kakei Y, et al. AhNRAMP1 iron transporter is involved in iron acquisition in peanut[J]. J Exp Bot, 2012, 63(12):4437-4446.
doi: 10.1093/jxb/ers117 URL |
[18] |
Zlobin IE, Kholodova VP, Rakhmankulova ZF, et al. Brassica napus responses to short-term excessive copper treatment with decrease of photosynthetic pigments, differential expression of heavy metal homeostasis genes including activation of gene NRAMP4 involved in photosystem II stabilization[J]. Photosynth Res, 2015, 125(1/2):141-150.
doi: 10.1007/s11120-014-0054-0 URL |
[19] |
Cailliatte R, Schikora A, Briat JF, et al. High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions[J]. Plant Cell, 2010, 22(3):904-917.
doi: 10.1105/tpc.109.073023 URL |
[20] |
Yang M, Zhang YY, Zhang LJ, et al. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots[J]. J Exp Bot, 2014, 65(17):4849-4861.
doi: 10.1093/jxb/eru259 URL |
[21] |
El-Sharkawy I, Sherif S, Mila I, et al. Molecular characterization of seven genes encoding ethylene-responsive transcriptional factors during plum fruit development and ripening[J]. J Exp Bot, 2009, 60(3):907-922.
doi: 10.1093/jxb/ern354 pmid: 19213809 |
[22] |
Zhang K, Novak O, Wei Z, et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins[J]. Nat Commun, 2014, 5:3274.
doi: 10.1038/ncomms4274 URL |
[23] | 王俊娟, 阴祖军, 王德龙, 等. 陆地棉脱水素蛋白GhDHN1的结构特征和无序性分析[J]. 中国棉花, 2017, 44(8):17-19, 28. |
Wang JJ, Yin ZJ, Wang DL, et al. The structure and disordered characteristics of GhDHN1 from upland cotton[J]. China Cotton, 2017, 44(8):17-19, 28. | |
[24] | Ogawa M, Ida S. Biosynthesis of ferredoxin-nitrite reductase in rice seedlings[J]. Plant Cell Physiol, 1987:1501-1508. |
[25] |
Peterman TK, Ohol YM, McReynolds LJ, et al. Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides[J]. Plant Physiol, 2004, 136(2):3080-3094.
pmid: 15466235 |
[26] | 李琼, 王学路, 苏伟. 拟南芥Patellin2相互作用蛋白的筛选及鉴定[J]. 复旦学报:自然科学版, 2016, 55(5):614-622. |
Li Q, Wang XL, Su W. Identification and validation of the interaction between patellin 2 and CDKB2;2 in Arabidopsis thaliana[J]. J Fudan Univ Nat Sci, 2016, 55(5):614-622. | |
[27] |
Peiro A, Izquierdo-Garcia AC, Sanchez-Navarro JA, et al. Patellins 3 and 6, two members of the Plant Patellin family, interact with the movement protein of Alfalfa mosaic virus and interfere with viral movement[J]. Mol Plant Pathol, 2014, 15(9):881-891.
doi: 10.1111/mpp.12146 pmid: 24751128 |
[28] | 马翠. 水稻硝酸盐转运蛋白基因OsNRT1. 2和OsNRT1. 5超量表达材料的功能鉴定[D]. 南京: 南京农业大学, 2011. |
Ma C. Characteristics of over-expression for nitrate transporter genes OsNRT1. 2 and OsNRT1. 5 in rice[D]. Nanjing: Nanjing Agricultural University, 2011. | |
[29] |
Nikkanen L, Rintamäki E. Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions[J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1640):20130224.
doi: 10.1098/rstb.2013.0224 URL |
[30] |
Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis[J]. Free Radic Biol Med, 2010, 48(6):749-762.
doi: 10.1016/j.freeradbiomed.2009.12.022 URL |
[31] |
Kang ZH, Qin T, Zhao ZP. Thioredoxins and thioredoxin reductase in chloroplasts:a review[J]. Gene, 2019, 706:32-42.
doi: 10.1016/j.gene.2019.04.041 URL |
[32] |
Ahanger MA, Ashraf M, Bajguz A, et al. Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones[J]. J Plant Growth Regul, 2018, 37(4):1007-1024.
doi: 10.1007/s00344-018-9855-2 URL |
[1] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[2] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[3] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[4] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[5] | 李敬蕊, 王育博, 解紫薇, 李畅, 吴晓蕾, 宫彬彬, 高洪波. 甜瓜PIN基因家族的鉴定及高温胁迫表达分析[J]. 生物技术通报, 2023, 39(5): 192-204. |
[6] | 马芳芳, 刘冠闻, 庞冰, 蒋春美, 师俊玲. 强化细胞外排提高工程菌类黄酮产量的策略[J]. 生物技术通报, 2023, 39(5): 63-76. |
[7] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[8] | 于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展[J]. 生物技术通报, 2023, 39(2): 1-9. |
[9] | 杨艳, 莫雨杏, 周祎, 陈惠明, 肖浪涛, 王若仲. 黄瓜内果皮汁液对种子萌发的影响[J]. 生物技术通报, 2023, 39(12): 158-168. |
[10] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[11] | 刘传和, 贺涵, 何秀古, 陈鑫, 刘开, 邵雪花, 赖多, 秦健, 庄庆礼, 匡石滋, 肖维强. 菠萝不同品种对低温胁迫响应差异的生理代谢机制[J]. 生物技术通报, 2023, 39(10): 219-230. |
[12] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[13] | 陈福暖, 黄瑜, 蔡佳, 王忠良, 简纪常, 王蓓. ABC转运蛋白结构及其在细菌致病性中的研究进展[J]. 生物技术通报, 2022, 38(6): 43-52. |
[14] | 曹映辉, 胡美娟, 童妍, 张燕萍, 赵凯, 彭东辉, 周育真. 建兰ABC基因家族鉴定及其在花发育过程中的表达模式分析[J]. 生物技术通报, 2022, 38(11): 162-174. |
[15] | 韩少杰, 郑经武. 寄主对大豆孢囊线虫抗性相关基因功能研究进展[J]. 生物技术通报, 2021, 37(7): 14-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||