生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 99-108.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1166
收稿日期:
2021-09-13
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
王争艳,女,博士,副教授,研究方向:储藏物昆虫学与害虫综合治理;E-mail: 基金资助:
WANG Zheng-yan(), HU Hai-sheng, YONG Han-zi, LU Yu-jie
Received:
2021-09-13
Published:
2022-07-26
Online:
2022-08-09
摘要:
共生菌和昆虫间存在广泛的营养共生关系。昆虫为共生菌提供营养物质和能量来源,共生菌向昆虫提供必需的营养素,帮助昆虫消化食物,参与氮素循环、维持正常的生理环境。共生菌和昆虫间还存在营养素代谢途径互补,这为两者的协同进化提供了动力。本文就共生菌对昆虫的营养功能、共生菌和昆虫间营养素的转运模式、昆虫对共生菌营养素生产和转运的调控等进行综述,以期为共生菌与宿主营养共生及其机制的深入研究提供参考。
王争艳, 胡海生, 雍晗紫, 鲁玉杰. 共生菌与昆虫的营养互作[J]. 生物技术通报, 2022, 38(7): 99-108.
WANG Zheng-yan, HU Hai-sheng, YONG Han-zi, LU Yu-jie. Nutritional Interactions Between Symbiotic Microbiota and Insect Hosts[J]. Biotechnology Bulletin, 2022, 38(7): 99-108.
[1] | 王争艳, 何梦婷, 鲁玉杰. 共生微生物对昆虫化学通讯的影响[J]. 应用昆虫学报, 2020, 57(6):1240-1248. |
Wang ZY, He MT, Lu YJ. Influence of microbial symbionts on chemical communication in insects[J]. Chin J Appl Entomol, 2020, 57(6):1240-1248. | |
[2] |
Ankrah NYD, Douglas AE. Nutrient factories:metabolic function of beneficial microorganisms associated with insects[J]. Environ Microbiol, 2018, 20(6):2002-2011.
doi: 10.1111/1462-2920.14097 pmid: 29521443 |
[3] |
Douglas AE. Multiorganismal insects:diversity and function of resident microorganisms[J]. Annu Rev Entomol, 2015, 60:17-34.
doi: 10.1146/annurev-ento-010814-020822 pmid: 25341109 |
[4] |
Douglas AE, Minto LB, Wilkinson TL. Quantifying nutrient production by the microbial symbionts in an aphid[J]. J Exp Biol, 2001, 204(pt 2):349-358.
doi: 10.1242/jeb.204.2.349 URL |
[5] |
Russell CW, Bouvaine S, Newell PD, et al. Shared metabolic pathways in a coevolved insect-bacterial symbiosis[J]. Appl Environ Microbiol, 2013, 79(19):6117-6123.
doi: 10.1128/AEM.01543-13 URL |
[6] |
Shigenobu S, Watanabe H, Hattori M, et al. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS[J]. Nature, 2000, 407(6800):81-86.
doi: 10.1038/35024074 URL |
[7] |
Calle-Espinosa J, Ponce-De-leon M, Santos-Garcia D, et al. Nature lessons:the whitefly bacterial endosymbiont is a minimal amino acid factory with unusual energetics[J]. J Theor Biol, 2016, 407:303-317.
doi: S0022-5193(16)30207-7 pmid: 27473768 |
[8] |
Ohbayashi T, Futahashi R, Terashima M, et al. Comparative cytology, physiology and transcriptomics of Burkholderia insecticola in symbiosis with the bean bug Riptortus pedestris and in culture[J]. Isme J, 2019, 13(6):1469-1483.
doi: 10.1038/s41396-019-0361-8 pmid: 30742016 |
[9] |
Wang SC, Wang LY, Fan X, et al. An insight into diversity and functionalities of gut microbiota in insects[J]. Curr Microbiol, 2020, 77(9):1976-1986.
doi: 10.1007/s00284-020-02084-2 URL |
[10] |
Wang YB, Ren FR, Yao YL, et al. Intracellular symbionts drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins[J]. Isme J, 2020, 14(12):2923-2935.
doi: 10.1038/s41396-020-0717-0 URL |
[11] |
Santos-Garcia D, Juravel K, Freilich S, et al. To B or not to B:comparative genomics suggests Arsenophonus as a source of B vitamins in whiteflies[J]. Front Microbiol, 2018, 9:2254.
doi: 10.3389/fmicb.2018.02254 pmid: 30319574 |
[12] |
Ju JF, Bing XL, Zhao DS, et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers[J]. Isme J, 2020, 14(3):676-687.
doi: 10.1038/s41396-019-0559-9 URL |
[13] |
Mankowski ME, Morrell JJ, Lebow PK. Effects on brood development in the carpenter ant Camponotus vicinus Mayr after exposure to the yeast associate Schwanniomyces polymorphuskloecker[J]. Insects, 2021, 12(6):520.
doi: 10.3390/insects12060520 URL |
[14] |
Nasir H, Noda H. Yeast-like Symbiotes as a sterol source in anobiid beetles(Coleoptera, Anobiidae):possible metabolic pathways from fungal sterols to 7-dehydrocholesterol[J]. Arch Insect Biochem Physiol, 2003, 52(4):175-182.
doi: 10.1002/arch.10079 URL |
[15] | Vicente CSL, Mondal SI, Akter A, et al. Genome analysis of new Blattabacterium spp. obligatory endosymbionts of Periplaneta fuliginosa and P. Japonica[J]. PLoS One, 2018, 13(7):e0200512. |
[16] | Macdonald SJ, Lin GG, Russell CW, et al. The central role of the host cell in symbiotic nitrogen metabolism[J]. Proc Biol Sci, 2012, 279(1740):2965-2973. |
[17] |
Blow F, Gioti A, Goodhead IB, et al. Functional genomics of a symbiotic community:shared traits in the olive fruit fly gut microbiota[J]. Genome Biol Evol, 2020, 12(2):3778-3791.
doi: 10.1093/gbe/evz258 URL |
[18] |
Dillon RJ, Dillon VM. The gut bacteria of insects:nonpathogenic interactions[J]. Annu Rev Entomol, 2004, 49(1):71-92.
doi: 10.1146/annurev.ento.49.061802.123416 URL |
[19] |
Zhou J, Duan J, Gao MK, et al. Diversity, roles, and biotechnological applications of symbiotic microorganisms in the gut of termite[J]. Curr Microbiol, 2019, 76(6):755-761.
doi: 10.1007/s00284-018-1502-4 URL |
[20] |
Meuti ME, Jones SC, Curtis PS. 15N discrimination and the sensitivity of nitrogen fixation to changes in dietary nitrogen in Reticulitermes flavipes(Isoptera:Rhinotermitidae)[J]. Environ Entomol, 2010, 39(6):1810-1815.
doi: 10.1603/EN10082 URL |
[21] |
Aharon Y, Pasternak Z, Ben Yosef M, et al. Phylogenetic, metabolic, and taxonomic diversities shape Mediterranean fruit fly microbiotas during ontogeny[J]. Appl Environ Microbiol, 2013, 79(1):303-313.
doi: 10.1128/AEM.02761-12 URL |
[22] | Bansal R, Hulbert S, Schemerhorn B, et al. Hessian fly-associated bacteria:transmission, essentiality, and composition[J]. PLoS One, 2011, 6(8):e23170. |
[23] |
Morales-Jiménez J, Zúñiga G, Villa-Tanaca L, et al. Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte(Coleoptera:Curculionidae:Scolytinae)[J]. Microb Ecol, 2009, 58(4):879-891.
doi: 10.1007/s00248-009-9548-2 pmid: 19543937 |
[24] |
Vilcinskas A, Schwabe M, Brinkrolf K, et al. Larvae of the clothing moth Tineola bisselliella maintain gut bacteria that secrete enzyme cocktails to facilitate the digestion of keratin[J]. Microorganisms, 2020, 8(9):1415.
doi: 10.3390/microorganisms8091415 URL |
[25] |
Pavlidi N, Gioti A, Wybouw N, et al. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding[J]. Sci Rep, 2017, 7:42633.
doi: 10.1038/srep42633 pmid: 28225009 |
[26] |
Calderón-Cortés N, Quesada M, Watanabe H, et al. Endogenous plant cell wall digestion:a key mechanism in insect evolution[J]. Annu Rev Ecol Evol Syst, 2012, 43(1):45-71.
doi: 10.1146/annurev-ecolsys-110411-160312 URL |
[27] | Wertz JT, Béchade B. Symbiont-mediated degradation of dietary carbon sources in social herbivorous insects[J]. Adv Insect Physiol, 2020, 58:63-109. |
[28] |
Lievens B, Hallsworth JE, Pozo MI, et al. Microbiology of sugar-rich environments:diversity, ecology and system constraints[J]. Environ Microbiol, 2015, 17(2):278-298.
doi: 10.1111/1462-2920.12570 pmid: 25041632 |
[29] |
Becher PG, Flick G, Rozpędowska E, et al. Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development[J]. Funct Ecol, 2012, 26(4):822-828.
doi: 10.1111/j.1365-2435.2012.02006.x URL |
[30] | Fischer CN, Trautman EP, Crawford JM, et al. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior[J]. eLife, 2017, 6:e18855. |
[31] |
Farine JP, Habbachi W, Cortot J, et al. Maternally-transmitted microbiota affects odor emission and preference in Drosophila larva[J]. Sci Rep, 2017, 7(1):6062.
doi: 10.1038/s41598-017-04922-z URL |
[32] | Zheng H, Nishida A, Kwong WK, et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola[J]. mBio, 2016, 7(6):e01326-16. |
[33] |
Lee FJ, Rusch DB, Stewart FJ, et al. Saccharide breakdown and fermentation by the honey bee gut microbiome[J]. Environ Microbiol, 2015, 17(3):796-815.
doi: 10.1111/1462-2920.12526 URL |
[34] |
Berasategui A, Shukla S, Salem H, et al. Potential applications of insect symbionts in biotechnology[J]. Appl Microbiol Biotechnol, 2016, 100(4):1567-1577.
doi: 10.1007/s00253-015-7186-9 pmid: 26659224 |
[35] |
Rajeswari G, Jacob S, Chandel AK, et al. Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach:a review[J]. Microb Cell Fact, 2021, 20(1):107.
doi: 10.1186/s12934-021-01597-0 URL |
[36] |
Kamsani N, Salleh MM, Yahya A, et al. Production of lignocellulolytic enzymes by microorganisms isolated from Bulbitermes sp. termite gut in solid-state fermentation[J]. Waste Biomass Valorization, 2016, 7(2):357-371.
doi: 10.1007/s12649-015-9453-5 URL |
[37] | Ali SS, Wu J, Xie RR, et al. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis[J]. PLoS One, 2017, 12(7):e0181141. |
[38] | Ayeronfe F, Kassim A, Hung P, et al. Production of ligninolytic enzymes by Coptotermes curvignathus gut bacteria[J]. Environ Clim Technol, 2019, 23(1):111-121. |
[39] |
Javadzadeh SG, Asoodeh A. A novel textile dye degrading extracellular laccase from symbiotic bacterium of Bacillus sp. CF96 isolated from gut termite(Anacanthotermes)[J]. Int J Biol Macromol, 2020, 145:355-363.
doi: 10.1016/j.ijbiomac.2019.12.205 URL |
[40] |
Zeitouni NE, Chotikatum S, von Köckritz-Blickwede M, et al. The impact of hypoxia on intestinal epithelial cell functions:consequences for invasion by bacterial pathogens[J]. Mol Cell Pediatr, 2016, 3(1):14.
doi: 10.1186/s40348-016-0041-y URL |
[41] |
Palmer-Young EC, Raffel TR, McFrederick QS. pH-mediated inhibition of a bumble bee parasite by an intestinal symbiont[J]. bioRxiv, 2018. DOI: 10.1101/336347.
doi: 10.1101/336347 |
[42] |
Zheng H, Powell JE, Steele MI, et al. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling[J]. PNAS, 2017, 114(18):4775-4780.
doi: 10.1073/pnas.1701819114 pmid: 28420790 |
[43] |
Brune A. Symbiotic digestion of lignocellulose in termite guts[J]. Nat Rev Microbiol, 2014, 12(3):168-180.
doi: 10.1038/nrmicro3182 URL |
[44] |
Zha XL, Wang H, Sun W, et al. Characteristics of the peritrophic matrix of the silkworm, Bombyx mori and factors influencing its formation[J]. Insects, 2021, 12(6):516.
doi: 10.3390/insects12060516 URL |
[45] | Rodgers FH, Gendrin M, Wyer CAS, et al. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes[J]. PLoS Pathog, 2017, 13(5):e1006391. |
[46] | Song XM, Wang MF, Dong L, et al. PGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synthesis[J]. PLoS Pathog, 2018, 14(2):e1006899. |
[47] |
Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology:short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6):1332-1345.
doi: 10.1016/j.cell.2016.05.041 URL |
[48] |
Miyamoto J, Hasegawa S, Kasubuchi M, et al. Nutritional signaling via free fatty acid receptors[J]. Int J Mol Sci, 2016, 17(4):450.
doi: 10.3390/ijms17040450 pmid: 27023530 |
[49] |
Kamareddine L, Robins WP, Berkey CD, et al. The Drosophila immune deficiency pathway modulates enteroendocrine function and host metabolism[J]. Cell Metab, 2018, 28(3):449-462. e5.
doi: S1550-4131(18)30379-6 pmid: 29937377 |
[50] | Carneiro Dutra HL, Deehan MA, Frydman H. Wolbachia and Sirtuin-4 interaction is associated with alterations in host glucose metabolism and bacterial titer[J]. PLoS Pathog, 2020, 16(10):e1008996. |
[51] |
Conceição CC, da Silva JN, Arcanjo A, et al. Aedes fluviatilis cell lines as new tools to study metabolic and immune interactions in mosquito-Wolbachia symbiosis[J]. Sci Rep, 2021, 11:19202.
doi: 10.1038/s41598-021-98738-7 URL |
[52] |
Morris BEL, Henneberger R, Huber H, et al. Microbial syntrophy:interaction for the common good[J]. FEMS Microbiol Rev, 2013, 37(3):384-406.
doi: 10.1111/1574-6976.12019 URL |
[53] |
Douglas AE. How multi-partner endosymbioses function[J]. Nat Rev Microbiol, 2016, 14(12):731-743.
doi: 10.1038/nrmicro.2016.151 pmid: 27795568 |
[54] |
Rao Q, Rollat-Farnier PA, Zhu DT, et al. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci[J]. BMC Genomics, 2015, 16:226.
doi: 10.1186/s12864-015-1379-6 URL |
[55] |
Ankrah NYD, Wilkes RA, Zhang FQ, et al. Syntrophic splitting of central carbon metabolism in host cells bearing functionally different symbiotic bacteria[J]. Isme J, 2020, 14(8):1982-1993.
doi: 10.1038/s41396-020-0661-z pmid: 32350409 |
[56] |
Manzano-Marin A, DAćier AC, Clamens AL, et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems[J]. Isme J, 2020, 14(1):259-273.
doi: 10.1038/s41396-019-0533-6 pmid: 31624345 |
[57] |
Perreau J, Moran NA. Genetic innovations in animal-microbe symbioses[J]. Nat Rev Genet, 2021. DOI: 10.1038/s41576-021-00395-z.
doi: 10.1038/s41576-021-00395-z |
[58] | Blow F, Ankrah NYD, Clark N, et al. Impact of facultative bacteria on the metabolic function of an obligate insect-bacterial symbiosis[J]. mBio, 2020, 11(4):e00402-20. |
[59] |
Luan JB, Chen W, Hasegawa DK, et al. Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects[J]. Genome Biol Evol, 2015, 7(9):2635-2647.
doi: 10.1093/gbe/evv170 URL |
[60] |
Otero-Bravo A, Sabree ZL. Multiple concurrent and convergent stages of genome reduction in bacterial symbionts across a stink bug family[J]. Sci Rep, 2021, 11(1):7731.
doi: 10.1038/s41598-021-86574-8 pmid: 33833268 |
[61] |
Husnik F, Nikoh N, Koga R, et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis[J]. Cell, 2013, 153(7):1567-1578.
doi: 10.1016/j.cell.2013.05.040 pmid: 23791183 |
[62] |
Mergaert P, Kikuchi Y, Shigenobu S, et al. Metabolic integration of bacterial endosymbionts through antimicrobial peptides[J]. Trends Microbiol, 2017, 25(9):703-712.
doi: S0966-842X(17)30095-1 pmid: 28549825 |
[63] | Feng HL, Edwards N, Anderson CMH, et al. Trading amino acids at the aphid-Buchnera symbiotic interface[J]. PNAS, 2019, 116 116(32):16003-16011. |
[64] | Poliakov A, Russell CW, Ponnala L, et al. Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis[J]. Mol Cell Proteomics, 2011, 10(6):M110. 007039. |
[65] |
Douglas AE. Molecular dissection of nutrient exchange at the insect-microbial interface[J]. Curr Opin Insect Sci, 2014, 4:23-28.
doi: S2214-5745(14)00060-1 pmid: 28043404 |
[66] |
Duncan RP, Husnik F, Van Leuven JT, et al. Dynamic recruitment of amino acid transporters to the insect/symbiont interface[J]. Mol Ecol, 2014, 23(6):1608-1623.
doi: 10.1111/mec.12627 URL |
[67] |
Skidmore IH, Hansen AK. The evolutionary development of plant-feeding insects and their nutritional endosymbionts[J]. Insect Sci, 2017, 24(6):910-928.
doi: 10.1111/1744-7917.12463 pmid: 28371395 |
[68] |
Simonet P, Duport G, Gaget K, et al. Direct flow cytometry measurements reveal a fine-tuning of symbiotic cell dynamics according to the host developmental needs in aphid symbiosis[J]. Sci Rep, 2016, 6:19967.
doi: 10.1038/srep19967 pmid: 26822159 |
[69] |
Vigneron A, Masson F, Vallier A, et al. Insects recycle endosymbionts when the benefit is over[J]. Curr Biol, 2014, 24(19):2267-2273.
doi: 10.1016/j.cub.2014.07.065 URL |
[70] | Luan JB, Shan HW, Isermann P, et al. Cellular and molecular remodelling of a host cell for vertical transmission of bacterial symbionts[J]. Proc R Soc B, 2016, 283(1833):20160580. |
[71] |
Liu YH, Shah MMR, Song Y, et al. Host plant affects symbiont abundance in Bemisia tabaci(Hemiptera:Aleyrodidae)[J]. Insects, 2020, 11(8):501.
doi: 10.3390/insects11080501 URL |
[72] |
Colella S, Parisot N, Simonet P, et al. Bacteriocyte reprogramming to cope with nutritional stress in a phloem sap feeding hemipteran, the pea aphid Acyrthosiphon pisum[J]. Front Physiol, 2018, 9:1498.
doi: 10.3389/fphys.2018.01498 URL |
[73] |
Sakurai M, Koga R, Tsuchida T, et al. Rickettsia symbiont in the pea aphid Acyrthosiphon pisum:novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera[J]. Appl Environ Microbiol, 2005, 71(7):4069-4075.
doi: 10.1128/AEM.71.7.4069-4075.2005 URL |
[74] | Kliot A, Cilia M, Czosnek H, et al. Implication of the bacterial endosymbiont Rickettsia spp. in interactions of the whitefly Bemisia tabaci with tomato yellow leaf curl virus[J]. J Virol, 2014,88(10):5652-5660. |
[75] |
Hosokawa T, Koga R, Kikuchi Y, et al. Wolbachia as a bacteriocyte-associated nutritional mutualist[J]. PNAS, 2010, 107(2):769-774.
doi: 10.1073/pnas.0911476107 URL |
[76] |
Haag AF, Arnold MF, Myka KK, et al. Molecular insights into bacteroid development during Rhizobium-legume symbiosis[J]. FEMS Microbiol Rev, 2013, 37(3):364-383.
doi: 10.1111/1574-6976.12003 URL |
[77] |
Moran NA, Bennett GM. The tiniest tiny genomes[J]. Annu Rev Microbiol, 2014, 68:195-215.
doi: 10.1146/annurev-micro-091213-112901 URL |
[78] |
Bennett GM, Moran NA. Heritable symbiosis:the advantages and perils of an evolutionary rabbit hole[J]. PNAS, 2015, 112(33):10169-10176.
doi: 10.1073/pnas.1421388112 pmid: 25713367 |
[79] | van Leuven JT, Mao M, Xing DD, et al. Cicada endosymbionts have tRNAs that are correctly processed despite having genomes that do not encode all of the tRNA processing machinery[J]. mBio, 2019, 10(3):e01950-18. |
[80] |
Ren FR, Sun X, Wang TY, et al. Pantothenate mediates the coordination of whitefly and symbiont fitness[J]. Isme J, 2021, 15(6):1655-1667.
doi: 10.1038/s41396-020-00877-8 URL |
[81] |
Douglas AE. Omics and the metabolic function of insect-microbial symbioses[J]. Curr Opin Insect Sci, 2018, 29:1-6.
doi: S2214-5745(17)30214-6 pmid: 30551814 |
[82] | Masson F, Lemaitre B. Growing ungrowable bacteria:overview and perspectives on insect symbiont culturability[J]. Microbiol Mol Biol Rev, 2020, 84(4):e00089-20. |
[83] | Ankrah NYD, Luan JB, Douglas AE. Cooperative metabolism in a three-partner insect-bacterial symbiosis revealed by metabolic modeling[J]. J Bacteriol, 2017, 199(15):e00872-e00816. |
[84] |
Banerjee S, Maiti TK, Roy RN. Enzyme producing insect gut microbes:an unexplored biotechnological aspect[J]. Crit Rev Biotechnol, 2021. DOI: 10.1080/07388551.2021.1942777.
doi: 10.1080/07388551.2021.1942777 |
[1] | 蒋贤哲, 张博彦, 罗海玲, 张新盟, 王炳. 肠肝轴在动物营养代谢和免疫中的作用[J]. 生物技术通报, 2022, 38(7): 128-135. |
[2] | 徐重新, 仲建锋, 高美静, 卢莉娜, 刘贤金, 沈燕. 植物内生菌在食用农产品质量安全与营养品质调控中的研究进展[J]. 生物技术通报, 2022, 38(5): 215-227. |
[3] | 朴君, 张璐婕, 朴敬爱, 周益军, 李硕. 利用小RNA深度测序技术检测灰飞虱病毒种类[J]. 生物技术通报, 2022, 38(2): 281-288. |
[4] | 黎猛, 陈跃, 胡凤荣. miR159-GAMYB途径调控植物生长发育的研究进展[J]. 生物技术通报, 2021, 37(9): 234-247. |
[5] | 张洁, 夏明聪, 朱文倩, 梁娟, 孙润红, 徐文, 武超, 杨丽荣. 蔬菜根结线虫生防芽胞杆菌的筛选及作用机理研究[J]. 生物技术通报, 2021, 37(7): 175-182. |
[6] | 胡紫媛, 夏嫱. 昆虫肠道菌群组学研究及功能和应用进展[J]. 生物技术通报, 2021, 37(1): 102-112. |
[7] | 徐雪亮, 王奋山, 刘子荣, 范琳娟, 季香云, 蒋杰贤, 姚英娟. RNA干扰技术在昆虫学领域研究进展[J]. 生物技术通报, 2021, 37(1): 255-261. |
[8] | 谢伟, 郝志鹏, 郭兰萍, 张莘, 张淑彬, 王幼珊, 陈保冬. 丛枝菌根影响植物萜类化合物合成与积累研究进展[J]. 生物技术通报, 2020, 36(9): 49-63. |
[9] | 徐子涵, 胡凤荣. miR172参与植物发育调控的研究进展[J]. 生物技术通报, 2020, 36(8): 173-184. |
[10] | 段入心, 孟雷, 王宁新. 昆虫共生菌介导的抗药性研究进展[J]. 生物技术通报, 2019, 35(9): 29-30. |
[11] | 朱丽萍, 刘聪聪, 宋书真, 刁斌. 甲基营养菌Methylobacterium extorquens AM1中最适荧光蛋白报告基因的鉴定[J]. 生物技术通报, 2019, 35(4): 43-50. |
[12] | 徐敬昭, 陈贝, 杜秉海, 赵东英, 汪城墙, 丁延芹. 一株嗜麦芽寡养单胞菌的分离及其生物学特性[J]. 生物技术通报, 2019, 35(3): 71-77. |
[13] | 李文宗,李卫华,徐妙云,王磊. 叶面肥对玉米籽粒中矿物元素的影响分析[J]. 生物技术通报, 2018, 34(5): 110-116. |
[14] | 王端, 姚香梅, 叶健. 根际微生物-植物-病毒-介体昆虫多元互作研究进展[J]. 生物技术通报, 2018, 34(2): 54-65. |
[15] | 霍岩, 陈晓英, 方荣祥, 张莉莉. 卵黄蛋白原的产生及其非营养功能的研究现状[J]. 生物技术通报, 2018, 34(2): 66-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||