生物技术通报 ›› 2023, Vol. 39 ›› Issue (10): 184-196.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0297
尹国英1(), 刘畅2, 常永春1,3, 羽王洁1,4, 王兵1, 张盼1, 郭玉双1()
收稿日期:
2023-04-04
出版日期:
2023-10-26
发布日期:
2023-11-28
通讯作者:
郭玉双,男,博士,副研究员,研究方向:植物病理学;E-mail: yshguo@126.com作者简介:
尹国英,女,博士,助理研究员,研究方向:植物病理学;E-mail: yinyinghygy6239@126.com
基金资助:
YIN Guo-ying1(), LIU Chang2, CHANG Yong-chun1,3, YU Wang-jie1,4, WANG Bing1, ZHANG Pan1, GUO Yu-shuang1()
Received:
2023-04-04
Published:
2023-10-26
Online:
2023-11-28
摘要:
植物半胱氨酸蛋白酶(cysteine proteases, CPs)广泛影响着植物的生理过程及抗病调控。为研究烟草半胱氨酸蛋白酶在调控马铃薯Y病毒(potato virus Y, PVY)中的功能机理,本研究在全基因组水平上鉴定栽培烟草CPs基因家族,使用生物信息学方法分析CPs基因家族的进化关系、Motif基序及启动子调控元件;筛选CPs对应的miRNAs,分析CPs基因及其对应的miRNAs在PVY感染后的表达特性。结果表明,栽培烟草中共鉴定到70个CPs基因家族成员,根据其系统发育特征和结构可分为5个亚家族,其中C1A 39个、C2A 2个、C12 5个,C13 8个,C14A 16个;Motif分析表明,同一亚家族CPs具有相似的motif分布;启动子顺式作用元件分析表明,CPs家族基因含有光应答元件、激素响应元件以及低温、干旱、高温、盐胁迫等响应元件。基于转录组和small RNA测序结果发现,PVY感染后有38个CPs基因上调表达,18个CPs基因下调表达。有28个CPs基因受51个miRNAs调控,PVY感染后,38个miRNAs表达上调,13个miRNAs表达下调,其中7个在PVY感染后与miRNAs负相关。RT-qPCR结果证明PVY感染后,有15个CPs基因表达量显著上调。研究结果有助于深入理解烟草CPs基因家族功能,及其与相应miRNAs通过互作调控烟草对PVY的响应,为研究茄科作物抗PVY分子机制提供理论依据。
尹国英, 刘畅, 常永春, 羽王洁, 王兵, 张盼, 郭玉双. 烟草半胱氨酸蛋白酶家族和相应miRNAs的鉴定及其对PVY的响应[J]. 生物技术通报, 2023, 39(10): 184-196.
YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY[J]. Biotechnology Bulletin, 2023, 39(10): 184-196.
图4 烟草半胱氨酸蛋白酶家族基因及其对应 miRNAs 调控的网络图 黄色代表靶基因,蓝色代表miRNAs
Fig. 4 Networks of corresponding cysteine protease family genes and their relatived miRNAs in tobacco Yellow represents target gene and blue represents miRNAs
图5 烟草半胱氨酸蛋白酶家族基因及对应miRNAs在PVY感染后的表达 A、B分别为半光氨酸蛋白酶家族基因和miRNAs表达热图;C、D分别为半光氨酸蛋白酶家族基因和miRNAs散点图;PVY指感染PVY,CK指对照
Fig. 5 Expressions of cysteine protease family genes and miRNAs infected PVY in tobacco A, B indicate the expression heatmap of cysteine protease family genes and miRNAs; C, D indicate the scatter plot of cysteine protease family genes and miRNAs, respectively; PVY refers to infection with PVY, while CK refers to control
图6 烟草半胱氨酸蛋白酶家族基因及对应miRNAs在PVY感染后表达量负相关调控图
Fig. 6 Negative correlation network of expressions of cysteine protease family genes and corresponding miRNAs after PVY infection in tobacco
图7 PVY感染后烟草半胱氨酸蛋白酶基因RT-qPCR分析 “CK”和“PVY”分别指对照和感染PVY;*与**分别表示基因表达量在感染PVY前后在P<0.05与P<0.01水平上差异显著
Fig. 7 RT-qPCR analysis of the cysteine protease genes in PVY-infected tobacco “CK” and “PVY” indicate the control and infected PVY, respectively; * and * * respectively indicate significant differences in gene expression levels at the P<0.05 and P<0.01 levels before and after infection with PVY
[1] |
Grudkowska M, Zagdańska B. Multifunctional role of plant cysteine proteinases[J]. Acta Biochim Pol, 2004, 51(3): 609-624.
pmid: 15448724 |
[2] |
吴丹丹, 陈永坤, 杨宇, 等. 小桐子半胱氨酸蛋白酶家族和相应miRNAs的鉴定及其对低温锻炼的响应[J]. 植物学报, 2021, 56(5): 544-558.
doi: 10.11983/CBB21014 |
Wu DD, Chen YK, Yang Y, et al. Identification of the cysteine protease family and corresponding miRNAs in Jatropha curcas and their response to chill-hardening[J]. Chin Bull Bot, 2021, 56(5): 544-558. | |
[3] |
Li YK, Cui W, Wang R, et al. microRNA858-mediated regulation of anthocyanin biosynthesis in kiwifruit(Actinidia arguta)based on small RNA sequencing[J]. PLoS One, 2019, 14(5): e0217480.
doi: 10.1371/journal.pone.0217480 URL |
[4] |
Karrer KM, Peiffer SL, DiTomas ME. Two distinct gene subfamilies within the family of cysteine protease genes[J]. Proc Natl Acad Sci USA, 1993, 90(7): 3063-3067.
pmid: 8464925 |
[5] |
Rawlings ND, Morton FR, Kok CY, et al. MEROPS: the peptidase database[J]. Nucleic Acids Res, 2008, 36(suppl_1): D320-D325.
doi: 10.1093/nar/gkm954 URL |
[6] |
Wilkinson KD, Laleli-Sahin E, Urbauer J, et al. The binding site for UCH-L3 on ubiquitin: mutagenesis and NMR studies on the complex between ubiquitin and UCH-L3[J]. J Mol Biol, 1999, 291(5): 1067-1077.
pmid: 10518943 |
[7] |
Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database[J]. Nucleic Acids Res, 2010, 38(Database issue): D227-D233.
doi: 10.1093/nar/gkp971 URL |
[8] |
Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis[J]. Annu Rev Biochem, 1999, 68: 383-424.
pmid: 10872455 |
[9] |
Dando PM, Fortunato M, Strand GB, et al. Pyroglutamyl-peptidase I: cloning, sequencing, and characterization of the recombinant human enzyme[J]. Protein Expr Purif, 2003, 28(1): 111-119.
doi: 10.1016/S1046-5928(02)00632-0 URL |
[10] |
Vorster BJ, Cullis CA, Kunert KJ. Plant vacuolar processing enzymes[J]. Front Plant Sci, 2019, 10: 479.
doi: 10.3389/fpls.2019.00479 pmid: 31031794 |
[11] | 丁修恒. 南方根结线虫效应蛋白MiV98抑制植物免疫及与番茄半胱氨酸蛋白酶Rcr3pim互作研究[D]. 南京: 南京农业大学, 2019. |
Ding XH. Inhibition of plant immunity and interaction with tomato cysteine protease Rcr3pim by the Meloidogyne incognita effector MiV98[D]. Nanjing: Nanjing Agricultural University, 2019. | |
[12] |
Bernoux M, Timmers T, Jauneau A, et al. RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector[J]. Plant Cell, 2008, 20(8): 2252-2264.
doi: 10.1105/tpc.108.058685 pmid: 18708476 |
[13] |
Bozkurt TO, Schornack S, Win J, et al. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface[J]. PNAS, 2011, 108(51): 20832-20837.
doi: 10.1073/pnas.1112708109 pmid: 22143776 |
[14] |
Zhao P, Zhou XM, Zhang LY, et al. A bipartite molecular module controls cell death activation in the Basal cell lineage of plant embryos[J]. PLoS Biol, 2013, 11(9): e1001655.
doi: 10.1371/journal.pbio.1001655 URL |
[15] |
Yang XL, Li YZ, Wang AM. Research advances in potyviruses: from the laboratory bench to the field[J]. Annu Rev Phytopathol, 2021, 59: 1-29.
doi: 10.1146/annurev-phyto-020620-114550 pmid: 33891829 |
[16] |
Glais L, Tribodet M, Kerlan C. Genomic variability in potato potyvirus Y(PVY): evidence that PVY(N)W and PVY(NTN)variants are single to multiple recombinants between PVY(O)and PVY(N)isolates[J]. Arch Virol, 2002, 147(2): 363-378.
pmid: 11890528 |
[17] |
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14[J]. Cell, 1993, 75(5): 843-854.
doi: 10.1016/0092-8674(93)90529-y pmid: 8252621 |
[18] |
Bazzini AA, Hopp HE, Beachy RN, et al. Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development[J]. PNAS, 2007, 104(29): 12157-12162.
doi: 10.1073/pnas.0705114104 pmid: 17615233 |
[19] |
Tang JY, Chu CC. microRNAs in crop improvement: fine-tuners for complex traits[J]. Nat Plants, 2017, 3: 17077.
doi: 10.1038/nplants.2017.77 pmid: 28665396 |
[20] |
Li F, Pignatta D, Bendix C, et al. microRNA regulation of plant innate immune receptors[J]. PNAS, 2012, 109(5): 1790-1795.
doi: 10.1073/pnas.1118282109 pmid: 22307647 |
[21] |
Park JH, Shin C. The role of plant small RNAs in NB-LRR regulation[J]. Brief Funct Genomics, 2015, 14(4): 268-274.
doi: 10.1093/bfgp/elv006 pmid: 25777149 |
[22] |
Iqbal MS, Hafeez MN, Wattoo JI, et al. Prediction of host-derived miRNAs with the potential to target PVY in potato plants[J]. Front Genet, 2016, 7: 159.
doi: 10.3389/fgene.2016.00159 pmid: 27683585 |
[23] | 詹琳琳. 烟草抗马铃薯Y病毒miRNA的筛选及相关miRNA的功能分析[D]. 杭州: 浙江农林大学, 2015. |
Zhan LL. Screening for miRNA of tobacco resistance to potato virus Y and function analysis of relevant miRNA[D]. Hangzhou: Zhejiang A & F University, 2015. | |
[24] |
Bao ML, Bian HW, Zha YL, et al. miR396a-Mediated basic helix-loop-helix transcription factor bHLH74 repression acts as a regulator for root growth in Arabidopsis seedlings[J]. Plant Cell Physiol, 2014, 55(7): 1343-1353.
doi: 10.1093/pcp/pcu058 URL |
[25] |
Guo YS, Jia MG, Yang YM, et al. Integrated analysis of tobacco miRNA and mRNA expression profiles under PVY infection provides insight into tobacco-PVY interactions[J]. Sci Rep, 2017, 7(1): 4895.
doi: 10.1038/s41598-017-05155-w |
[26] |
Niño MC, Kim MS, Kang KK, et al. Genome-wide identification and molecular characterization of cysteine protease genes in rice[J]. Plant Biotechnol Rep, 2020, 14(1): 69-87.
doi: 10.1007/s11816-019-00583-8 |
[27] |
Clark K, Franco JY, Schwizer S, et al. An effector from the huanglongbing-associated pathogen targets citrus proteases[J]. Nat Commun, 2018, 9(1): 1718.
doi: 10.1038/s41467-018-04140-9 pmid: 29712915 |
[28] |
Hao L, Hsiang T, Goodwin PH. Role of two cysteine proteinases in the susceptible response of Nicotiana benthamiana to Colletotri-chum destructivum and the hypersensitive response to Pseudomonas syringae pv. tomato[J]. Plant Sci, 2006, 170(5): 1001-1009.
doi: 10.1016/j.plantsci.2006.01.011 URL |
[29] |
Mueller AN, Ziemann S, Treitschke S, et al. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2[J]. PLoS Pathog, 2013, 9(2): e1003177.
doi: 10.1371/journal.ppat.1003177 URL |
[30] |
van der Linde K, Mueller AN, Hemetsberger C, et al. The maize cystatin CC9 interacts with apoplastic cysteine proteases[J]. Plant Signal Behav, 2012, 7(11): 1397-1401.
doi: 10.4161/psb.21902 pmid: 22960758 |
[31] |
Bar-Ziv A, Levy Y, Hak H, et al. The tomato yellow leaf curl virus(TYLCV)V2 protein interacts with the host papain-like cysteine protease CYP1[J]. Plant Signal Behav, 2012, 7(8): 983-989.
doi: 10.4161/psb.20935 pmid: 22827939 |
[32] |
Ueda T, Seo S, Ohashi Y, et al. Circadian and senescence-enhanced expression of a tobacco cysteine protease gene[J]. Plant Mol Biol, 2000, 44(5): 649-657.
pmid: 11198425 |
[33] |
Zang QW, Wang CX, Li XY, et al. Isolation and characterization of a gene encoding a polyethylene glycol-induced cysteine protease in common wheat[J]. J Biosci, 2010, 35(3): 379-388.
doi: 10.1007/s12038-010-0043-1 URL |
[34] | 马岩岩, 张军, 陈娇, 等. 柑橘半胱氨酸蛋白酶基因CsCysP的分离、亚细胞定位及表达分析[J]. 园艺学报, 2014, 41(4): 621-630. |
Ma YY, Zhang J, Chen J, et al. Isolation, subcellular localization and expression analysis of a Citrus cysteine protease gene, Cs-CysP[J]. Acta Hortic Sin, 2014, 41(4): 621-630. | |
[35] | 闫龙凤, 杨青川, 韩建国, 等. 植物半胱氨酸蛋白酶研究进展[J]. 草业学报, 2005, 14(5): 11-19. |
Yan LF, Yang QC, Han JG, et al. Summary of cysteine protease in plants[J]. Acta Pratacultural Sci, 2005, 14(5): 11-19. | |
[36] |
Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. PNAS, 2000, 97(21): 11632-11637.
doi: 10.1073/pnas.190309197 pmid: 11005831 |
[37] | 罗健达. 马铃薯Y病毒侵染对烟草叶绿体蛋白降解的调控机理研究[D]. 北京: 中国农业科学院, 2021. |
Luo JD. The research of the regulation mechanism of chloroplast protein degradation induced by potato virus Y in tobacco[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
[38] |
裴悦宏, 李凤巍, 刘维娜, 等. 本氏烟半胱氨酸蛋白酶基因家族特征及其在TMV侵染中的功能[J]. 中国农业科学, 2022, 55(21): 4196-4210.
doi: 10.3864/j.issn.0578-1752.2022.21.008 |
Pei YH, Li FW, Liu WN, et al. Characteristics of cysteine proteinase gene family in Nicotiana benthamiana and its function during TMV infection[J]. Sci Agric Sin, 2022, 55(21): 4196-4210. |
[1] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[2] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[3] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[4] | 刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化[J]. 生物技术通报, 2023, 39(7): 123-130. |
[5] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[6] | 韩华蕊, 杨宇琭, 门艺涵, 韩尚玲, 韩渊怀, 霍轶琼, 侯思宇. 基于代谢组学研究谷子SiYABBYs参与花发育过程中鼠李糖苷的生物合成[J]. 生物技术通报, 2023, 39(6): 189-198. |
[7] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[8] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[9] | 王羽, 尹铭绅, 尹晓燕, 奚家勤, 杨建伟, 牛秋红. 烟草甲体内烟碱降解菌的筛选、鉴定及降解特性[J]. 生物技术通报, 2023, 39(6): 308-315. |
[10] | 李敬蕊, 王育博, 解紫薇, 李畅, 吴晓蕾, 宫彬彬, 高洪波. 甜瓜PIN基因家族的鉴定及高温胁迫表达分析[J]. 生物技术通报, 2023, 39(5): 192-204. |
[11] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[12] | 熊淑琪. 胆汁酸生理功能及其与肠道微生物互作研究进展[J]. 生物技术通报, 2023, 39(4): 187-200. |
[13] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[14] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[15] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||