生物技术通报 ›› 2023, Vol. 39 ›› Issue (12): 128-135.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0539
收稿日期:
2023-06-08
出版日期:
2023-12-26
发布日期:
2024-01-11
通讯作者:
吴玉香,女,博士,教授,研究方向:棉花遗传育种;E-mail: yuxiangwu2009@hotmail.com作者简介:
候林慧,女,硕士研究生,研究方向:种质创新与遗传工程;E-mail: wan19980816hlh@163.com
基金资助:
HOU Lin-hui(), ZHENG Yun, RONG Er-hua, WU Yu-xiang()
Received:
2023-06-08
Published:
2023-12-26
Online:
2024-01-11
摘要:
远缘杂交及多倍化是物种形成和种质创新的基础,将陆地棉与野生瑟伯氏棉进行远缘杂交及染色体加倍获得可育杂种。旨在将瑟伯氏棉的有益农艺性状转移到陆地棉中,拓宽陆地棉的遗传基础。以陆地棉为母本,瑟伯氏作父本进行远缘杂交合成杂种F1,并进行染色体加倍,获得异源六倍体,对F1及异源六倍体进行形态学、细胞学、生理生化及SSR分子标记鉴定。形态学鉴定结果表明,异源六倍体植株整体与杂种三倍体相似,介于双亲之间,异源六倍体的雄蕊多于亲本及F1,有淡红色的花斑,与亲本及F1都不同。细胞学鉴定表明,随着倍性的增加,气孔密度呈下降趋势,而气孔长度、叶绿体数和花粉粒直径均呈上升趋势;杂种三倍体(F1)和异源六倍体的减数分裂行为表明,二者的减数分裂均有正常和异常行为,三倍体中的多分体较多,而六倍体正常四分体明显增多。三倍体的多分体中,正常四分体占比为24.33%;六倍体的多分体中,正常四分体占比为82.17%,表明六倍体的育性在恢复。生理生化结果表明,酶的活性随不同世代倍性的增长而升高。SSR鉴定结果表明,三倍体杂种和异源六倍体既扩增出了父母本的条带,同时也扩增出了新的特异性条带,表明远缘杂交过程中产生了染色体重组现象。通过远缘杂交成功合成陆瑟杂种,通过染色体加倍成功获得了可育的异源六倍体。
候林慧, 郑赟, 荣二花, 吴玉香. 陆地棉与瑟伯氏棉远缘杂交后代性状鉴定与遗传分析[J]. 生物技术通报, 2023, 39(12): 128-135.
HOU Lin-hui, ZHENG Yun, RONG Er-hua, WU Yu-xiang. Character Identification and Genetic Analysis of Progeny from Distant Hybrid Between Gossypium hirsutum and G. thurberi[J]. Biotechnology Bulletin, 2023, 39(12): 128-135.
类名 Classific name | 染色体组 Genome | 染色体数Number of chromosomes | 来源 Source |
---|---|---|---|
陆地棉 G. hirsutum | AD1 | 2n=4X=52 | 中国农科院棉花研究所 Cotton Research Institute, CAAS |
瑟伯氏棉 G. thurberi | D1 | 2n=2X=26 | 国家种质三亚野生棉圃 Sanya National Germplasm Wild Cotton Garden |
表1 研究材料基本信息
Table 1 Basic information of research materials
类名 Classific name | 染色体组 Genome | 染色体数Number of chromosomes | 来源 Source |
---|---|---|---|
陆地棉 G. hirsutum | AD1 | 2n=4X=52 | 中国农科院棉花研究所 Cotton Research Institute, CAAS |
瑟伯氏棉 G. thurberi | D1 | 2n=2X=26 | 国家种质三亚野生棉圃 Sanya National Germplasm Wild Cotton Garden |
正向引物Forward primer | 引物序列Primer sequence(5'-3') | 反向引物Reverse primer | 引物序列Primer sequence(5'-3') |
---|---|---|---|
BNL4108-F | TCCACCATTCCCGTAAATGT | BNL4108-R | TGGCCAAGTCATTAGGCTTT |
BNL4053-F | TGAAGGCTTTGAAGCAAACA | BNL4053-R | AAGCAAGCACCAAGTTAGCC |
NAU2026-F | GAATCTCGAAAACCCCATCT | NAU2026-R | ATTTGGAAGCGAAGTACCAG |
NAU1355-F | ATCTGTTTACGCCACTCTCC | NAU1355-R | CCAGCCTTTGACATTTTTCT |
NAU1169-F | GGGTAGTAGCTTTTATGATAGGG | NAU1169-R | CCATTCCTTCCCCTAATTCT |
NAU1157-F | GAGTTTGGTTCTGGGTTGAG | NAU1157-R | GATCCTTTTCATCTCCTCCA |
NAU1052-F | CGCAGATAAAGGATGGATTT | NAU1052-R | AGAGCTGGAGGACATAACAAA |
NAU1042-F | CATGCAAATCCATGCTAGAG | NAU1042-R | GGTTTCTTTGGTGGTGAAAC |
NAU1164-F | CCAACGCTAATTCTACCTCCT | NAU1164-R | GCGGGTAATTGTAGTACATGC |
NBRI_GI1015-F | GAGTTTGGCTCCGAGTTGAG | NBRI_GI1015-R | GCGAGTGAACTCACCGATAA |
NBRI_GM7-F | GTGATACCTGGAAAGATGTGA | NBRI_GM7-R | TCCTGATGCTGTTTTAGTCTT |
NBRI_Gpd_21-F | GCAATTGTGGAAGAGAAGTAA | NBRI_Gpd_21-R | GGACCTCTGAGTCCATTTATT |
NBRI_Gpd_85-F | CTCAAAAACCCCTTTAGTCTC | NBRI_Gpd_85-R | GAGTGAAAACCCGCAAAG |
表2 SSR引物序列信息
Table 2 SSR primers sequence information
正向引物Forward primer | 引物序列Primer sequence(5'-3') | 反向引物Reverse primer | 引物序列Primer sequence(5'-3') |
---|---|---|---|
BNL4108-F | TCCACCATTCCCGTAAATGT | BNL4108-R | TGGCCAAGTCATTAGGCTTT |
BNL4053-F | TGAAGGCTTTGAAGCAAACA | BNL4053-R | AAGCAAGCACCAAGTTAGCC |
NAU2026-F | GAATCTCGAAAACCCCATCT | NAU2026-R | ATTTGGAAGCGAAGTACCAG |
NAU1355-F | ATCTGTTTACGCCACTCTCC | NAU1355-R | CCAGCCTTTGACATTTTTCT |
NAU1169-F | GGGTAGTAGCTTTTATGATAGGG | NAU1169-R | CCATTCCTTCCCCTAATTCT |
NAU1157-F | GAGTTTGGTTCTGGGTTGAG | NAU1157-R | GATCCTTTTCATCTCCTCCA |
NAU1052-F | CGCAGATAAAGGATGGATTT | NAU1052-R | AGAGCTGGAGGACATAACAAA |
NAU1042-F | CATGCAAATCCATGCTAGAG | NAU1042-R | GGTTTCTTTGGTGGTGAAAC |
NAU1164-F | CCAACGCTAATTCTACCTCCT | NAU1164-R | GCGGGTAATTGTAGTACATGC |
NBRI_GI1015-F | GAGTTTGGCTCCGAGTTGAG | NBRI_GI1015-R | GCGAGTGAACTCACCGATAA |
NBRI_GM7-F | GTGATACCTGGAAAGATGTGA | NBRI_GM7-R | TCCTGATGCTGTTTTAGTCTT |
NBRI_Gpd_21-F | GCAATTGTGGAAGAGAAGTAA | NBRI_Gpd_21-R | GGACCTCTGAGTCCATTTATT |
NBRI_Gpd_85-F | CTCAAAAACCCCTTTAGTCTC | NBRI_Gpd_85-R | GAGTGAAAACCCGCAAAG |
图1 不同世代花的解剖图和花蕊的比较 P1:陆地棉母本;P2:瑟伯氏棉父本;F1:杂种三倍体;M1:异源六倍体。下同
Fig. 1 Comparison of flower anatomy and stamens of different generations P1: G. hirsutum; P2: G. thurber; F1: hybrid; M1: allohexaploid. The same below
图4 不同世代减数分裂行为的对比 A-E为F1(A:单分体;B:二分体和2个微核;C:三分体;D:四分体;E:多分体);F-J为M1(F:单分体;G:三分体;H:异常四分体;I:正常四分体;J:多分体)
Fig. 4 A comparison of meiosis behaviors in different generations(Bar=20 μm) A-E are F1(A: Monad. B: Dyad and two Micronucleus. C: Triad. D: Tetrad.E: Polyad). F-J are M1(F: Monad. G: Triad. H: Abnormal Tetrad. I: Normal Tetrad.J: Polyad
倍性 Ploidy | 单分体 Monad | 二分体 Dyad | 三分体 Triad | 四分体 Tetrad | 多分体 Polyad | 总数 Total |
---|---|---|---|---|---|---|
F1(3X) | 73(12.17) | 25(4.17) | 38(6.33) | 146(24.33) | 318(53.00) | 600 |
M1(6X) | 63(10.50) | 15(2.50) | 17(2.83) | 493(82.17) | 12(2.00) | 600 |
表3 各世代减数分裂的对比
Table 3 Comparison of meiosis in different generations
倍性 Ploidy | 单分体 Monad | 二分体 Dyad | 三分体 Triad | 四分体 Tetrad | 多分体 Polyad | 总数 Total |
---|---|---|---|---|---|---|
F1(3X) | 73(12.17) | 25(4.17) | 38(6.33) | 146(24.33) | 318(53.00) | 600 |
M1(6X) | 63(10.50) | 15(2.50) | 17(2.83) | 493(82.17) | 12(2.00) | 600 |
材料(倍性) Material(Ploidy) | 气孔密度 Stomatal density | 气孔比 Porosity ratio | 叶绿体数Number of chloroplasts |
---|---|---|---|
F1(3X) | 36.35±1.55a | 1.28±0.17a | 16.45±2.54a |
M1(6X) | 26.45±1.89b | 1.40±0.12b | 26.31±2.30b |
表4 各世代气孔的比较
Table 4 Comparison of stomatas in different generations
材料(倍性) Material(Ploidy) | 气孔密度 Stomatal density | 气孔比 Porosity ratio | 叶绿体数Number of chloroplasts |
---|---|---|---|
F1(3X) | 36.35±1.55a | 1.28±0.17a | 16.45±2.54a |
M1(6X) | 26.45±1.89b | 1.40±0.12b | 26.31±2.30b |
图6 各世代酶活性的比较 小写字母表示在0.05水平差异显著,大写字母表示在0.01水平差异显著。下同
Fig. 6 Comparison of enzyme activities in different generations Lowercase letters indicate a significant difference at the 0.05 level, the capital letters indicate a significant difference at the 0.01 level. The same below
材料Material | 3X | 6X | ||||||
---|---|---|---|---|---|---|---|---|
母本 Female parent | 父本 Male parent | 重组片段Recombination | 母本 Female parent | 父本 Male parent | 重组片段Recombination | |||
SSR条带SSR bands | 34 | 21 | 4 | 34 | 21 | 6 | ||
遗传比例Genetic ratio/% | 57.62 | 35.59 | 6.79 | 55.73 | 34.42 | 9.85 |
表5 不同世代的 SSR 多态性分析
Table 5 Analysis of SSR polymorphism in different generations
材料Material | 3X | 6X | ||||||
---|---|---|---|---|---|---|---|---|
母本 Female parent | 父本 Male parent | 重组片段Recombination | 母本 Female parent | 父本 Male parent | 重组片段Recombination | |||
SSR条带SSR bands | 34 | 21 | 4 | 34 | 21 | 6 | ||
遗传比例Genetic ratio/% | 57.62 | 35.59 | 6.79 | 55.73 | 34.42 | 9.85 |
[1] | 王坤波. 野生棉的收集与保存[J]. 棉花学报, 2007, 19(5): 354-361. |
Wang KB. Introduction and conservation of wild cotton in China[J]. Cotton Sci, 2007, 19(5): 354-361. | |
[2] | 董琪. D基因组野生棉响应大丽轮枝菌侵染的转录组分析[D]. 保定: 河北农业大学, 2019. |
Dong Q. Transcriptome analysis of D genome wild cotton in response to Verticillium dahlia infection[D]. Baoding: Hebei Agricultural University, 2019. | |
[3] |
Sattler MC, Carvalho CR, Clarindo WR. The polyploidy and its key role in plant breeding[J]. Planta, 2016, 243(2): 281-296.
doi: 10.1007/s00425-015-2450-x pmid: 26715561 |
[4] |
Mammadov J, Buyyarapu R, Guttikonda SK, et al. Wild relatives of maize, rice, cotton, and soybean: Treasure troves for tolerance to biotic and abiotic stresses[J]. Front Plant Sci, 2018, 9: 886.
doi: 10.3389/fpls.2018.00886 pmid: 30002665 |
[5] |
Zhao FA, Fang WP, et al. Proteomic identification of differentially expressed proteins in Gossypium thurberi inoculated with cotton Verticillium dahliae[J]. Plant Sci, 2012, 185/186: 176-184.
doi: 10.1016/j.plantsci.2011.10.007 URL |
[6] |
牛永章, 李炳林, 张原根, 等. 陆地棉×瑟伯氏棉杂种后代主要经济性状的遗传分析[J]. 华北农学报, 1989(1): 41-47.
doi: 10.3321/j.issn:1000-7091.1989.01.008 |
Niu YZ, Li BL, Zhang YG, et al. Genetic analysis of the main economic characters of the hybrid progeny of upland cotton×Thurber cotton[J]. Acta Agri Boreali Sin, 1989(1): 41-47. | |
[7] | 潘家驹, 闵留芳, 刘康, 等. 陆地棉芽黄基因应用于杂种棉的研究[J]. 南京农业大学学报, 1998, 21(3): 7-14. |
Pan JJ, Min LF, Liu K, et al. The exploitation of virescent genes on upland hybrid cotton[J]. J Nanjing Agric Univ, 1998, 21(3): 7-14. | |
[8] | 梁理民, 王增信, 等. 棉花种间杂交新品系及新种质的育成[J]. 西北农林科技大学学报: 自然科学版, 2003, 31(5):9-12. |
Liang LM, Wang ZX, et al. Selection for new interspecific hybridization strains and germplasms of cotton[J]. J Northwest Sci Tech Univ Agric For Nat Sci Ed, 2003, 31(5): 9-12. | |
[9] | 李爱国, 赵丽芬, 赵国忠. 远缘杂交棉花品种石远321的选育研究[J]. 安徽农业科学, 2006, 34(9): 1812-1813, 1815. |
Li AG, Zhao LF, Zhao GZ. Study on selection and breeding of distant hybridization cotton variety Shiyuan 321[J]. J Anhui Agric Sci, 2006, 34(9): 1812-1813, 1815. | |
[10] |
Cai X, Magwanga RO, Xu Y, et al. Comparative transcriptome, physiological and biochemical analyses reveal response mechanism mediated by CBF4 and ICE2 in enhancing cold stress tolerance in Gossypium thurberi[J]. AoB Plants, 2019, 11(6): plz045.
doi: 10.1093/aobpla/plz045 URL |
[11] |
Gan Y, Chen D, Liu F, et al. Individual chromosome assignment and chromosomal collinearity in Gossypium thurberi, G. trilobum and D subgenome of G. barbadense revealed by BAC-FISH[J]. Genes Genet Syst, 2011, 86(3): 165-174.
doi: 10.1266/ggs.86.165 URL |
[12] | Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22(5): 867-880. |
[13] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
Li HS. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000. | |
[14] | 申状状, 杨娜, 等. 亚洲棉与瑟伯氏棉种间远缘杂种的合成及其性状鉴定[J]. 分子植物育种, 2017, 15(6): 2291-2297. |
Shen ZZ, Yang N, et al. Synthesis and identification of interspecific hybrid between Gossypium arboreum L. and G. thurberi T.[J]. Mol Plant Breed, 2017, 15(6): 2291-2297. | |
[15] | 宋平, 王志安, 王志宁. 棉属中染色体倍性与叶片气孔性状的关系[J]. 浙江农业大学学报, 1989(1): 39-44. |
Song P, Wang ZA, Wang ZN. Relationship between chromosome ploidyand stomatal characters of leaf in Gossypium[J]. J Zhejiang Agric Univ, 1989, 15(1): 39-44. | |
[16] | 胡绍安, 崔荣霞, 等. 陆地棉野生种系的利用研究[J]. 棉花学报, 1994, 6(S1): 15-18. |
Hu SA, Cui RX, et al. Utilization and studies on wild races of G. hirsutum L.[J]. Acta Gossypii Sin, 1994, 6(S1): 15-18. | |
[17] |
Cheng F, Wu J, Cai X, et al. Gene retention, fractionation and subgenome differences in polyploid plants[J]. Nat Plants, 2018, 4(5):258-268.
doi: 10.1038/s41477-018-0136-7 pmid: 29725103 |
[18] |
申状状, 李昱樱, 等. 陆地棉和野生斯特提棉种间异源六倍体的合成与性状鉴定[J]. 作物学报, 2019, 45(4): 628-634.
doi: 10.3724/SP.J.1006.2019.84086 |
Shen ZZ, Li YY, et al. Allohexaploid synthesis and its characteristic identification between cotton species Gossypium hirsutum and G. sturtianum[J]. Crop J, 2019, 45(4): 628-634. | |
[19] | 王坤波, 刘旭. 棉属多倍化研究进展[J]. 中国农业科技导报, 2013, 15(2): 20-27. |
Wang KB, Liu X. Study progress of Gossypium polyploidization[J]. J Agric Sci Technol, 2013, 15(2): 20-27. | |
[20] |
Yin X, Zhan R, He Y, et al. Morphological description of a novel synthetic allotetraploid(A1A1G3G3)of Gossypium herbaceum L. and G. nelsonii Fryx suitable for disease-resistant breeding applications[J]. PLoS One, 2020, 15(12): e0242620.
doi: 10.1371/journal.pone.0242620 URL |
[21] |
Chen D, Wu Y, Zhang X, et al. Analysis of[G. capitisviridis ×(G. hirsutum × G. australe)2]trispeci-fic hybrid and selected characteristics[J]. PLoS One, 2015, 10(6): e0127023.
doi: 10.1371/journal.pone.0127023 URL |
[22] |
Meng S, Xu Z, Xu P, et al. A complete set of monosomic alien addition lines developed from Gossypium anomalum in a Gossypium hirsutum background: genotypic and phenotypic characterization[J]. Breed Sci, 2020, 70(4): 494-501.
doi: 10.1270/jsbbs.19146 URL |
[23] | Zheng J, Kong X, et al. Comparative transcriptome analysis between a novel allohexaploid cotton progeny CMS line LD6A and its maintainer line LD6B[J]. Int J Mol Sci, 2019, 20(24): E6127. |
[24] |
Masoomi-Aladizgeh F, Kamath KS, Haynes PA, et al. Genome survey sequencing of wild cotton(Gossypium robinsonii)reveals insights into proteomic responses of pollen to extreme heat[J]. Plant Cell Environ, 2022, 45(4): 1242-1256.
doi: 10.1111/pce.v45.4 URL |
[25] |
Wei Y, Xu Y, Lu P, et al. Salt stress responsiveness of a wild cotton species(Gossypium klotzschianum)based on transcriptomic analysis[J]. PLoS One, 2017, 12(5): e0178313.
doi: 10.1371/journal.pone.0178313 URL |
[1] | 尹明华, 余锾媛, 肖心怡, 王玉婷. 江西铅山红芽芋叶绿体基因组特征及系统发育分析[J]. 生物技术通报, 2023, 39(6): 233-247. |
[2] | 王一帆, 候林慧, 常永春, 杨亚杰, 陈天, 赵祝跃, 荣二花, 吴玉香. 陆地棉与拟似棉异源六倍体的合成与性状鉴定[J]. 生物技术通报, 2023, 39(5): 168-176. |
[3] | 安苗, 王彤彤, 付逸婷, 夏俊俊, 彭锁堂, 段永红. 52个马铃薯遗传多样性分析及SSR分子身份证构建[J]. 生物技术通报, 2023, 39(12): 136-147. |
[4] | 陆育生, 彭程, 常晓晓, 邱继水, 陈喆, 陈慧琼. 基于SSR标记的广东黄皮种质资源遗传多样性分析及分子身份证构建[J]. 生物技术通报, 2023, 39(12): 187-199. |
[5] | 符勇耀, 易德燕, 杨先茂, 蔡莉, 梁渝华, 雷美艳, 杨利平. 卷丹新种质JD-h-15的形态特征与遗传变异分析[J]. 生物技术通报, 2022, 38(11): 140-150. |
[6] | 赵祝跃, 申状状, 王一帆, 杨亚杰, 荣二花, 吴玉香. 陆地棉与野生斯特提棉远缘杂种性状鉴定及遗传解析[J]. 生物技术通报, 2021, 37(5): 19-27. |
[7] | 管俊娇, 杨晓洪, 张鹏, 黄清梅, 张建华. 基于荧光检测技术的青稞品种鉴定方法的建立[J]. 生物技术通报, 2021, 37(11): 293-302. |
[8] | 王衍莉, 杨义明, 范书田, 赵滢, 许培磊, 路文鹏, 李昌禹. 基于SSR分子标记的73份山葡萄及杂交后代的遗传多样性分析[J]. 生物技术通报, 2021, 37(1): 189-197. |
[9] | 王一帆, 郑赟, 荣二花, 吴玉香. 亚洲棉与拟似棉远缘杂种的合成与鉴定[J]. 生物技术通报, 2020, 36(8): 1-7. |
[10] | 王宇, 邓孟胜, 徐驰, 余丽萍, 谢良帅, 李立芹, 王西瑶. 马铃薯StSSR2的克隆与表达分析[J]. 生物技术通报, 2020, 36(4): 61-69. |
[11] | 李勇慧, 于相丽, 马会萍, 高凯, 刘名雪. 不同品种牡丹ISSR遗传多样性分析[J]. 生物技术通报, 2020, 36(4): 78-83. |
[12] | 赵阳阳, 郭雨潇, 张凌云. 文冠果果实转录组测序及分析[J]. 生物技术通报, 2019, 35(6): 24-31. |
[13] | 刘培培, 罗光明, 柴华文, 张俊逸, 朱梓豪, 王得运. SSR标记技术在中药鉴定中的应用[J]. 生物技术通报, 2019, 35(2): 198-203. |
[14] | 王平, 王春语, 张丽霞, 丛玲, 朱振兴, 陆晓春. 利用重测序技术开发高粱多态性SSR分子标记[J]. 生物技术通报, 2019, 35(11): 217-223. |
[15] | 尹跃, 赵建华, 安巍, 李彦龙, 何军, 曹有龙. 利用SSR标记构建枸杞品种分子身份证[J]. 生物技术通报, 2018, 34(9): 195-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||