生物技术通报 ›› 2023, Vol. 39 ›› Issue (6): 208-216.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1400
赵雪婷1(), 高利燕2, 王俊刚2, 沈庆庆1, 张树珍2(), 李富生1()
收稿日期:
2022-11-14
出版日期:
2023-06-26
发布日期:
2023-07-07
通讯作者:
李富生,男,博士,教授,研究方向:甘蔗资源创新与利用;E-mail: lfs810@sina.com;作者简介:
赵雪婷,女,硕士研究生,研究方向:作物遗传与品种改良;E-mail: 1421389929@qq.com
基金资助:
ZHAO Xue-ting1(), GAO Li-yan2, WANG Jun-gang2, SHEN Qing-qing1, ZHANG Shu-zhen2(), LI Fu-sheng1()
Received:
2022-11-14
Published:
2023-06-26
Online:
2023-07-07
摘要:
AP2/ERF转录因子在调控植物的生长发育、抵抗生物和非生物胁迫方面发挥重要作用。克隆ShERF3,并分析其功能,为甘蔗抗逆遗传改良提供基因资源。基于转录组数据从‘新台糖22号’甘蔗中克隆ShERF3,并通过Real time PCR、生物信息学分析、水稻原生质体亚细胞定位等技术对ShERF3编码的蛋白特性、亚细胞定位及基因表达模式进行分析。结果显示,克隆获得1 142 bp ShERF3的cDNA序列,包含1个1 053 bp的完整开放阅读框,编码350个氨基酸;ShERF3蛋白含有一个AP2结构域,属于AP2/ERF家族ERF亚家族成员,与高粱和柳枝稷ERF3、谷子和哈氏黍ERF118蛋白同源性较高;ShERF3蛋白是一种不稳定的疏水性蛋白,亚细胞定位结果显示其定位于细胞核;ShERF3主要在甘蔗成熟茎节中表达,在叶片和根系中相对表达较低;在PEG处理下,ShERF3表达先下调后上调,在NaCl处理下,随着胁迫时间延长ShERF3表达量降低。甘蔗ShERF3积极响应干旱和盐逆境胁迫,可能在甘蔗茎秆发育、干旱以及盐胁迫应答方面发挥关键作用。
赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216.
ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein[J]. Biotechnology Bulletin, 2023, 39(6): 208-216.
图5 甘蔗ShERF3蛋白质二级结构的预测 蓝色为α-螺旋;红色为延伸链;绿色为β-转角;紫色为无规卷曲
Fig. 5 Prediction of secondary structure of ShERF3 in sugarcane The blue is α-helix; red is extended- strand; green is beta turn; purple is random coil
图7 ShERF3在‘新台糖22号’不同部位的表达分析 IL:未成熟叶;ML:成熟叶;S1:茎节1-2;S2:茎节4-5;S3:茎节7-8;S4:茎节10-11;S5:茎节12-13;S6:茎节14-15;RS:根;不同小写字母表示在0.05水平差异显著。下同
Fig. 7 Expression analysis of ShERF3 gene in different parts of ‘ROC22’ IL: Immature leaves; ML: mature leaves; S1: stem node 1-2; S2: stem node 4-5; S3: stem node 7-8; S4: stem node 10-11; S5: stem node 12-13; S6: stem node 14-15; Rs: root system. Different lowercases indicate significant differences at the 0.05 level. The same below
[1] |
Venkataramana S, Gururaja Rao PN, Naidu KM. The effects of water stress during the formative phase on stomatal resistance and leaf water potential and its relationship with yield in ten sugarcane varieties[J]. Field Crops Res, 1986, 13: 345-353.
doi: 10.1016/0378-4290(86)90035-3 URL |
[2] |
Cha-um S, Chuencharoen S, Mongkolsiriwatana C, et al. Screening sugarcane(Saccharum sp.) genotypes for salt tolerance using multivariate cluster analysis[J]. Plant Cell Tiss Organ Cult, 2012, 110(1): 23-33.
doi: 10.1007/s11240-012-0126-9 URL |
[3] | 陈玉凤, 李竹, 苏炜华, 等. 甘蔗AP2/ERF基因家族的鉴定及表达[J]. 应用与环境生物学报, 2022, 28(1): 67-81. |
Chen YF, Li Z, Su WH, et al. Identification and expression analysis of AP2/ERF gene family in sugarcane[J]. Chin J Appl Environ Biol, 2022, 28(1): 67-81. | |
[4] |
徐超华, 李纯佳, 苏火生, 等. 甘蔗非生物胁迫抗性研究进展[J]. 植物遗传资源学报, 2017, 18(3): 483-493.
doi: 10.13430/j.cnki.jpgr.2017.03.013 |
Xu CH, Li CJ, Su HS, et al. Progress in the studies on abiotic stress resistance of sugarcane(Saccharum spp.)[J]. J Plant Genet Resour, 2017, 18(3): 483-493. | |
[5] |
Okamuro JK, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis[J]. Proc Natl Acad Sci USA, 1997, 94(13): 7076-7081.
doi: 10.1073/pnas.94.13.7076 pmid: 9192694 |
[6] |
Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression[J]. Biochem Biophys Res Commun, 2002, 290(3): 998-1009.
doi: 10.1006/bbrc.2001.6299 URL |
[7] |
Chuck G, Meeley RB, Hake S. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1[J]. Genes Dev, 1998, 12(8): 1145-1154.
doi: 10.1101/gad.12.8.1145 URL |
[8] |
Alonso JM, Stepanova AN, Leisse TJ, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana[J]. Science, 2003, 301(5633): 653-657.
doi: 10.1126/science.1086391 pmid: 12893945 |
[9] |
Hu YX, Wang YX, Liu XF, et al. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development[J]. Cell Res, 2004, 14(1): 8-15.
doi: 10.1038/sj.cr.7290197 |
[10] |
Sohn KH, Lee SC, Jung HW, et al. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance[J]. Plant Mol Biol, 2006, 61(6): 897-915.
doi: 10.1007/s11103-006-0057-0 pmid: 16927203 |
[11] |
Thomashow MF. PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms[J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571-599.
doi: 10.1146/arplant.1999.50.issue-1 URL |
[12] |
Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995, 7(2): 173-182.
doi: 10.1105/tpc.7.2.173 pmid: 7756828 |
[13] |
Hao DY, Yamasaki K, Sarai A, et al. Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs[J]. Biochemistry, 2002, 41(13): 4202-4208.
doi: 10.1021/bi015979v URL |
[14] |
Pirrello J, Prasad BC, Zhang WS, et al. Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene[J]. BMC Plant Biol, 2012, 12: 190.
doi: 10.1186/1471-2229-12-190 pmid: 23057995 |
[15] |
Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol, 2006, 140(2): 411-432.
doi: 10.1104/pp.105.073783 URL |
[16] | 张静. 逆境胁迫下玉米DNA去甲基化酶和AP2/ERF基因家族的全基因组鉴定与分析[D]. 芜湖: 安徽师范大学, 2020. |
Zhang J. Genome-wide identification and analysis of maize DNA demethylase and AP2/ERF gene family under stress[D]. Wuhu: Anhui Normal University, 2020. | |
[17] |
Solano R, Stepanova A, Chao Q, et al. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1[J]. Genes Dev, 1998, 12(23): 3703-3714.
doi: 10.1101/gad.12.23.3703 URL |
[18] |
Benavente LM, Alonso JM. Molecular mechanisms of ethylene signaling in Arabidopsis[J]. Mol BioSyst, 2006, 2(3/4): 165-173.
doi: 10.1039/b513874d URL |
[19] | Chang KN, Zhong S, Weirauch MT, et al. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis[J]. eLife, 2013, 2: 00675. |
[20] |
Cheng MC, Liao PM, Kuo WW, et al. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals[J]. Plant Physiol, 2013, 162(3): 1566-1582.
doi: 10.1104/pp.113.221911 URL |
[21] |
Klay I, Gouia S, Liu MC, et al. Ethylene response factors(ERF)are differentially regulated by different abiotic stress types in tomato plants[J]. Plant Sci, 2018, 274: 137-145.
doi: 10.1016/j.plantsci.2018.05.023 URL |
[22] |
Huang ZJ, Zhang ZJ, Zhang XL, et al. Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes[J]. FEBS Lett, 2004, 573(1/2/3): 110-116.
doi: 10.1016/j.febslet.2004.07.064 URL |
[23] |
Zhang HW, Huang ZJ, Xie BY, et al. The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco[J]. Planta, 2004, 220(2): 262-270.
doi: 10.1007/s00425-004-1347-x URL |
[24] |
Wu LJ, Chen XL, Ren HY, et al. ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco[J]. Planta, 2007, 226(4): 815-825.
doi: 10.1007/s00425-007-0528-9 pmid: 17479283 |
[25] |
Song CP, Agarwal M, Ohta M, et al. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses[J]. Plant Cell, 2005, 17(8): 2384-2396.
doi: 10.1105/tpc.105.033043 URL |
[26] |
Li JJ, Guo X, Zhang MH, et al. OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis[J]. Plant Sci, 2018, 270: 131-139.
doi: 10.1016/j.plantsci.2018.01.017 URL |
[27] |
Zhao MJ, Yin LJ, Liu Y, et al. The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean[J]. BMC Plant Biol, 2019, 19(1): 506.
doi: 10.1186/s12870-019-2066-6 |
[28] |
Tian ZD, He Q, Wang HX, et al. The potato ERF transcription factor StERF3 negatively regulates resistance to Phytophthora infestans and salt tolerance in potato[J]. Plant Cell Physiol, 2015, 56(5): 992-1005.
doi: 10.1093/pcp/pcv025 URL |
[29] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学: 生命科学, 2019, 49(10): 1227-1281. |
Li J, Li CY. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Sci Sin Vitae, 2019, 49(10): 1227-1281. | |
[30] |
Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis[J]. Nat Protoc, 2007, 2(7): 1565-1572.
doi: 10.1038/nprot.2007.199 |
[31] |
Xu ZS, Chen M, Li LC, et al. Functions and application of the AP2/ERF transcription factor family in crop improvement[J]. J Integr Plant Biol, 2011, 53(7): 570-585.
doi: 10.1111/jipb.2011.53.issue-7 URL |
[32] |
Zhang ZJ, Li F, Li DJ, et al. Expression of ethylene response factor JERF1 in rice improves tolerance to drought[J]. Planta, 2010, 232(3): 765-774.
doi: 10.1007/s00425-010-1208-8 URL |
[33] |
Pan Y, Seymour GB, Lu CG, et al. An ethylene response factor(ERF5)promoting adaptation to drought and salt tolerance in tomato[J]. Plant Cell Rep, 2012, 31(2): 349-360.
doi: 10.1007/s00299-011-1170-3 pmid: 22038370 |
[34] |
Dey S, Corina Vlot A. Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants[J]. Front Plant Sci, 2015, 6: 640.
doi: 10.3389/fpls.2015.00640 pmid: 26379679 |
[35] | 史红飞, 高翔, 陈其皎, 等. 小麦NAC转录因子的基因克隆与序列分析[J]. 麦类作物学报, 2011, 31(3): 395-401. |
Shi HF, Gao X, Chen QJ, et al. Genes cloning and sequences analysis of NAC transcription factor in wheat[J]. J Triticeae Crops, 2011, 31(3): 395-401. | |
[36] |
Casu RE, Dimmock CM, Chapman SC, et al. Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling[J]. Plant Mol Biol, 2004, 54(4): 503-517.
doi: 10.1023/B:PLAN.0000038255.96128.41 URL |
[37] |
Rong W, Qi L, Wang AY, et al. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat[J]. Plant Biotechnol J, 2014, 12(4): 468-479.
doi: 10.1111/pbi.12153 pmid: 24393105 |
[38] | 翟莹, 张军, 赵艳, 等. 大豆ERF转录因子基因GmERF8的克隆与表达分析[J]. 植物遗传资源学报, 2016, 17(6): 1036-1040. |
Zhai Y, Zhang J, Zhao Y, et al. Cloning and expression analysis of ERF transcription factor GmERF8 in soybean(Glycine max L.)[J]. J Plant Genet Resour, 2016, 17(6): 1036-1040. | |
[39] |
Zhuang J, Jiang HH, Wang F, et al. A rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in transgenic Arabidopsis[J]. Plant Mol Biol Rep, 2013, 31(6): 1336-1345.
doi: 10.1007/s11105-013-0610-3 URL |
[40] |
Wang FJ, Wang CL, Liu PQ, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS One, 2016, 11(4): e0154027.
doi: 10.1371/journal.pone.0154027 URL |
[41] |
鲁琳, 赵希胜, 刘桂雲, 等. 花烟草NaERF1基因的克隆及在非生物胁迫下的表达模式分析[J]. 生物技术通报, 2020, 36(1): 1-8.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0550 |
Lu L, Zhao XS, Liu GY, et al. Cloning and expression profile analysis of NaERF1 under abiotic stresses in Nicotiana alata[J]. Biotechnol Bull, 2020, 36(1): 1-8.. |
[1] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[2] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[3] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[4] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[5] | 李心怡, 姜春秀, 薛丽, 蒋洪涛, 姚伟, 邓祖湖, 张木清, 余凡. 多荧光标记引物增强甘蔗染色体寡聚核苷酸探针杂交信号[J]. 生物技术通报, 2023, 39(5): 103-111. |
[6] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[7] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[8] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[9] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[10] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[11] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[12] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[13] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[14] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[15] | 许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||