生物技术通报 ›› 2023, Vol. 39 ›› Issue (9): 192-201.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0258
吴巧茵1,2,3(), 施友志4, 李林林4, 彭政1,3, 谭再钰4, 刘利平4, 张娟1,3(), 潘勇4()
收稿日期:
2023-03-21
出版日期:
2023-09-26
发布日期:
2023-10-24
通讯作者:
张娟,女,博士,教授,研究方向:基于系统生物学的微生物群落分析与代谢工程改造、新型食品酶制剂的开发;E-mail: zhangj@jiangnan.edu.cn;作者简介:
吴巧茵,女,硕士研究生,研究方向:雪茄微生物与发酵研究;E-mail: 6200201045@stu.jiangnan.edu.cn
基金资助:
WU Qiao-yin1,2,3(), SHI You-zhi4, LI Lin-lin4, PENG Zheng1,3, TAN Zai-yu4, LIU Li-ping4, ZHANG Juan1,3(), PAN Yong4()
Received:
2023-03-21
Published:
2023-09-26
Online:
2023-10-24
摘要:
通过筛选可降解类胡萝卜素的烟草内生菌,并应用于国产雪茄烟叶发酵从而实现烟叶香韵和感官质量提升。首先,原位培养基中添加烟叶粉末模拟原位生长环境以富集烟叶内生菌,结合流式分选技术,从优质雪茄烟叶内生菌中筛选具有β-胡萝卜素降解能力的菌株;将菌株接种至国产雪茄烟叶发酵,检测发酵烟叶类胡萝卜素降解产物含量并进行感官评价。结果显示,共筛选获得21株内生菌对β-胡萝卜素的降解率超过50%,主要为农杆菌属、根瘤菌属、鞘氨醇杆菌属、肠杆菌属等。菌株C31、C11、H4能够增加烟叶香韵类型,明显改善烟叶香气质、香气量、杂气、刺激性等指标,发酵烟叶类胡萝卜素降解产物含量分别是对照的1.38、1.28、1.43倍,其中法尼基丙酮、香叶基丙酮、巨豆三烯酮的增加强化了烟叶焦甜香、花香、木香香韵。综上,原位筛选获得的3株类胡萝卜素降解内生菌C31、C11、H4能够较好地改善国产雪茄烟叶品质,可作为新型雪茄工业微生物制剂和特征香韵雪茄微生物制剂进一步开发应用。
吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201.
WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar[J]. Biotechnology Bulletin, 2023, 39(9): 192-201.
菌株 Strain | 香气质 Aroma quality | 香气量 Aroma amount | 杂气 Miscellaneous gas | 刺激性Thrillness | 余味 Remaining taste | 甜润感Sweetness | 燃烧性Flammability | 灰色Gray | 质量得分 Quality score |
---|---|---|---|---|---|---|---|---|---|
CK | 3.10 | 3.10 | 2.90 | 2.90 | 3.10 | 2.90 | 4.10 | 4.00 | 60.47 |
C31 | 3.50 | 3.30 | 3.00 | 3.30 | 3.30 | 3.50 | 4.50 | 4.00 | 67.07 |
C11 | 3.30 | 3.50 | 3.30 | 3.50 | 3.30 | 3.30 | 4.50 | 3.50 | 66.93 |
H4 | 3.00 | 3.00 | 3.00 | 3.30 | 3.30 | 2.80 | 4.00 | 3.80 | 63.00 |
A72 | 3.30 | 3.30 | 3.50 | 3.30 | 3.00 | 2.80 | 4.50 | 4.00 | 62.73 |
F5 | 3.00 | 3.30 | 3.00 | 2.80 | 3.30 | 2.80 | 4.00 | 3.50 | 61.07 |
1D3 | 3.50 | 3.00 | 3.50 | 3.00 | 3.00 | 2.50 | 4.00 | 4.00 | 61.00 |
A5 | 3.00 | 2.80 | 2.80 | 3.00 | 2.50 | 2.30 | 4.00 | 3.00 | 60.93 |
H92 | 2.90 | 3.10 | 3.10 | 3.20 | 2.70 | 2.80 | 3.80 | 3.70 | 60.83 |
2F2 | 3.00 | 3.00 | 3.00 | 3.50 | 3.00 | 2.50 | 3.80 | 3.50 | 59.87 |
2B1 | 2.80 | 2.80 | 2.80 | 3.20 | 3.10 | 2.80 | 3.30 | 3.20 | 59.75 |
C7 | 3.30 | 3.30 | 3.00 | 2.50 | 3.30 | 2.80 | 3.00 | 3.50 | 59.73 |
A71 | 3.30 | 2.50 | 3.00 | 2.50 | 2.80 | 2.80 | 4.00 | 4.00 | 59.73 |
F92 | 3.00 | 2.80 | 3.00 | 2.80 | 2.80 | 2.50 | 4.00 | 3.50 | 59.73 |
2B2 | 2.50 | 2.80 | 2.80 | 2.80 | 2.80 | 3.00 | 4.00 | 4.00 | 59.33 |
1F9 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 4.00 | 4.00 | 58.80 |
2E5 | 3.00 | 2.50 | 3.00 | 3.00 | 3.00 | 3.50 | 4.00 | 4.00 | 57.00 |
2C11 | 3.00 | 3.50 | 3.00 | 3.00 | 3.00 | 2.50 | 3.00 | 3.00 | 57.30 |
1C1 | 2.50 | 2.50 | 3.00 | 3.00 | 3.00 | 2.50 | 4.00 | 3.00 | 56.70 |
B11 | 2.80 | 2.80 | 2.50 | 3.00 | 2.80 | 1.50 | 4.00 | 3.30 | 56.00 |
F91 | 3.00 | 2.80 | 2.50 | 2.50 | 3.00 | 1.50 | 3.50 | 3.00 | 55.47 |
C42 | 3.00 | 2.80 | 2.50 | 2.80 | 2.80 | 2.80 | 3.30 | 3.30 | 55.07 |
表1 发酵烟叶质量得分
Table 1 Quality score of fermented tobacco leaves
菌株 Strain | 香气质 Aroma quality | 香气量 Aroma amount | 杂气 Miscellaneous gas | 刺激性Thrillness | 余味 Remaining taste | 甜润感Sweetness | 燃烧性Flammability | 灰色Gray | 质量得分 Quality score |
---|---|---|---|---|---|---|---|---|---|
CK | 3.10 | 3.10 | 2.90 | 2.90 | 3.10 | 2.90 | 4.10 | 4.00 | 60.47 |
C31 | 3.50 | 3.30 | 3.00 | 3.30 | 3.30 | 3.50 | 4.50 | 4.00 | 67.07 |
C11 | 3.30 | 3.50 | 3.30 | 3.50 | 3.30 | 3.30 | 4.50 | 3.50 | 66.93 |
H4 | 3.00 | 3.00 | 3.00 | 3.30 | 3.30 | 2.80 | 4.00 | 3.80 | 63.00 |
A72 | 3.30 | 3.30 | 3.50 | 3.30 | 3.00 | 2.80 | 4.50 | 4.00 | 62.73 |
F5 | 3.00 | 3.30 | 3.00 | 2.80 | 3.30 | 2.80 | 4.00 | 3.50 | 61.07 |
1D3 | 3.50 | 3.00 | 3.50 | 3.00 | 3.00 | 2.50 | 4.00 | 4.00 | 61.00 |
A5 | 3.00 | 2.80 | 2.80 | 3.00 | 2.50 | 2.30 | 4.00 | 3.00 | 60.93 |
H92 | 2.90 | 3.10 | 3.10 | 3.20 | 2.70 | 2.80 | 3.80 | 3.70 | 60.83 |
2F2 | 3.00 | 3.00 | 3.00 | 3.50 | 3.00 | 2.50 | 3.80 | 3.50 | 59.87 |
2B1 | 2.80 | 2.80 | 2.80 | 3.20 | 3.10 | 2.80 | 3.30 | 3.20 | 59.75 |
C7 | 3.30 | 3.30 | 3.00 | 2.50 | 3.30 | 2.80 | 3.00 | 3.50 | 59.73 |
A71 | 3.30 | 2.50 | 3.00 | 2.50 | 2.80 | 2.80 | 4.00 | 4.00 | 59.73 |
F92 | 3.00 | 2.80 | 3.00 | 2.80 | 2.80 | 2.50 | 4.00 | 3.50 | 59.73 |
2B2 | 2.50 | 2.80 | 2.80 | 2.80 | 2.80 | 3.00 | 4.00 | 4.00 | 59.33 |
1F9 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 4.00 | 4.00 | 58.80 |
2E5 | 3.00 | 2.50 | 3.00 | 3.00 | 3.00 | 3.50 | 4.00 | 4.00 | 57.00 |
2C11 | 3.00 | 3.50 | 3.00 | 3.00 | 3.00 | 2.50 | 3.00 | 3.00 | 57.30 |
1C1 | 2.50 | 2.50 | 3.00 | 3.00 | 3.00 | 2.50 | 4.00 | 3.00 | 56.70 |
B11 | 2.80 | 2.80 | 2.50 | 3.00 | 2.80 | 1.50 | 4.00 | 3.30 | 56.00 |
F91 | 3.00 | 2.80 | 2.50 | 2.50 | 3.00 | 1.50 | 3.50 | 3.00 | 55.47 |
C42 | 3.00 | 2.80 | 2.50 | 2.80 | 2.80 | 2.80 | 3.30 | 3.30 | 55.07 |
图4 发酵烟叶感官质量雷达图 A:香韵类型;B:定性指标和定量指标
Fig. 4 Radar chart of sensory quality of fermented tobacco leaves A: Aroma type. B: Qualitative and quantitative index
图5 发酵烟叶类胡萝卜素降解产物含量 “*”表示在0.05水平下,样品间存在显著性差异
Fig. 5 Content of carotenoid-degraded products in fermented tobacco leaves “*” indicates significant difference between samples at the level of 0.05
类胡萝卜素降解产物含量Content of carotenoid degradation product/(μg·g-1) | 对照CK | C11 | C31 | H4 |
---|---|---|---|---|
柑橘酮3,7-Nonadien-2-one, 4,8-dimethyl | - | - | - | 0.05 |
香叶基丙酮Geranyl acetone | 0.60 | 1.04 | 0.97 | 0.96 |
氧化紫罗兰醇(+)-3-Oxo-alpha-ionol | - | 0.14 | - | 0.08 |
巨豆三烯酮Megastigmatrienone | 0.70 | 0.91 | 0.27 | 0.50 |
橙化基丙酮Neryl acetone | 0.60 | - | 0.79 | 0.96 |
六氢假紫罗兰酮2-Undecanone, 6,10-dimethyl | 0.06 | 0.09 | 0.13 | 0.09 |
二氢猕猴桃内酯Dihydroactinidiolide | 0.45 | 0.66 | 0.64 | 0.53 |
4-氧化异佛尔酮4-Oxoisophorone | 0.01 | 0.03 | - | 0.04 |
法尼基丙酮Farnesyl acetone | 0.38 | 0.83 | 0.98 | 0.68 |
甲基庚烯酮5-Hepten-2-one, 6-methyl | 0.03 | 0.09 | 0.18 | 0.19 |
β-二氢紫罗兰酮Dihydro-beta-ionone | 0.06 | - | - | 0.05 |
总量Total | 2.88 | 3.70 | 3.96 | 4.13 |
表2 发酵烟叶类胡萝卜素降解产物
Table 2 Carotenoid-degraded products in fermented tobacco leaves
类胡萝卜素降解产物含量Content of carotenoid degradation product/(μg·g-1) | 对照CK | C11 | C31 | H4 |
---|---|---|---|---|
柑橘酮3,7-Nonadien-2-one, 4,8-dimethyl | - | - | - | 0.05 |
香叶基丙酮Geranyl acetone | 0.60 | 1.04 | 0.97 | 0.96 |
氧化紫罗兰醇(+)-3-Oxo-alpha-ionol | - | 0.14 | - | 0.08 |
巨豆三烯酮Megastigmatrienone | 0.70 | 0.91 | 0.27 | 0.50 |
橙化基丙酮Neryl acetone | 0.60 | - | 0.79 | 0.96 |
六氢假紫罗兰酮2-Undecanone, 6,10-dimethyl | 0.06 | 0.09 | 0.13 | 0.09 |
二氢猕猴桃内酯Dihydroactinidiolide | 0.45 | 0.66 | 0.64 | 0.53 |
4-氧化异佛尔酮4-Oxoisophorone | 0.01 | 0.03 | - | 0.04 |
法尼基丙酮Farnesyl acetone | 0.38 | 0.83 | 0.98 | 0.68 |
甲基庚烯酮5-Hepten-2-one, 6-methyl | 0.03 | 0.09 | 0.18 | 0.19 |
β-二氢紫罗兰酮Dihydro-beta-ionone | 0.06 | - | - | 0.05 |
总量Total | 2.88 | 3.70 | 3.96 | 4.13 |
[1] |
Popova V, Ivanova T, Prokopov T, et al. Carotenoid-related volatile compounds of tobacco(Nicotiana tabacum L.) essential oils[J]. Molecules, 2019, 24(19): 3446.
doi: 10.3390/molecules24193446 URL |
[2] |
Bukhari SI, Manzoor M, Dhar MK. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids[J]. Biomed Pharmacother, 2018, 98: 733-745.
doi: S0753-3322(17)35182-X pmid: 29306211 |
[3] |
Liang MH, He YJ, Liu DM, et al. Regulation of carotenoid degradation and production of apocarotenoids in natural and engineered organisms[J]. Crit Rev Biotechnol, 2021, 41(4): 513-534.
doi: 10.1080/07388551.2021.1873242 URL |
[4] |
Zheng XJ, Yang Y, Al-Babili S. Exploring the diversity and regulation of apocarotenoid metabolic pathways in plants[J]. Front Plant Sci, 2021, 12: 787049.
doi: 10.3389/fpls.2021.787049 URL |
[5] |
朱明明, 樊明涛, 何鸿举. 类胡萝卜素降解方式的研究进展[J]. 食品科学, 2017, 38(11): 308-317.
doi: 10.7506/spkx1002-6630-201711048 |
Zhu MM, Fan MT, He HJ. Advances in methods for the degradation of carotenoids[J]. Food Sci, 2017, 38(11): 308-317. | |
[6] | 杨雪鹏, 赵越, 胡仙妹, 等. 烟叶叶黄素降解菌发酵条件研究[J]. 河南农业科学, 2015, 44(5): 151-155, 160. |
Yang XP, Zhao Y, Hu XM, et al. Research on fermentation condition of lutein degradation bacterium from tobacco[J]. J Henan Agric Sci, 2015, 44(5): 151-155, 160. | |
[7] | 龙章德, 王敏, 薛云, 等. 烟叶中β-胡萝卜素高效降解菌株的筛选鉴定及发酵条件优化[J]. 轻工学报, 2022, 37(4): 86-93. |
Long ZD, Wang M, Xue Y, et al. Screening and identifying of β-carotene degrading strains from tobacco leaves and its optimization of fermentation conditions[J]. J Zhengzhou Univ Light Ind Nat Sci Ed, 2022, 37(4): 86-93. | |
[8] | 张梦旭, 潘明明, 胡珑瀚, 等. 内生菌的功能及在烟草上的研究进展[J]. 烟草科技, 2017, 50(11): 105-112. |
Zhang MX, Pan MM, Hu LH, et al. Function of endophytes and their corresponding functions on tobacco[J]. Tob Sci Technol, 2017, 50(11): 105-112. | |
[9] | 陈颐, 杨佳玫, 王玉平, 等. 不同产地片烟醇化进程中抗氧化物质动态变化分析[J]. 中国烟草科学, 2017, 38(5): 93-99. |
Chen Y, Yang JM, Wang YP, et al. Dynamic variation analysis of antioxidant substances in flue-cured tobacco strips from different producing areas during aging[J]. Chin Tob Sci, 2017, 38(5): 93-99. | |
[10] | 袁涛. 广西梧州药用野生稻内生菌新种鉴定及生物学功能研究[D]. 广州: 华南农业大学, 2018. |
Yuan T. Identification and biological function of new endophytic bacteria from medicinal wild rice in Wuzhou, Guangxi[D]. Guangzhou: South China Agricultural University, 2018. | |
[11] | 林丽, 陈泽斌, 何群香, 等. 烟草不同部位内生细菌的多样性[J]. 江苏农业科学, 2017, 45(22): 274-278. |
Lin L, Chen ZB, He QX, et al. Diversity of endophytic bacteria in different parts of tobacco[J]. Jiangsu Agric Sci, 2017, 45(22): 274-278. | |
[12] | 朱丽花, 马延琴, 纪彦宇, 等. 产类胡萝卜素酵母菌的筛选及色素稳定性分析[J]. 中国酿造, 2021, 40(9): 139-144. |
Zhu LH, Ma YQ, Ji YY, et al. Screening of carotenoid-producing yeast and pigment stability analysis[J]. China Brew, 2021, 40(9): 139-144. | |
[13] | 熊盈盈, 莫祯妮, 邱树毅, 等. 未培养环境微生物培养方法的研究进展[J]. 微生物学通报, 2021, 48(5): 1765-1779. |
Xiong YY, Mo ZN, Qiu SY, et al. Research progress on culture methods of uncultured environmental microorganisms[J]. Microbiol China, 2021, 48(5): 1765-1779. | |
[14] | 荣楠, 李备, 唐昊冶, 等. 微生物菌种筛选技术方法研究进展[J]. 土壤, 2021, 53(2): 236-242. |
Rong N, Li B, Tang HY, et al. Advances in strain isolating technique and method for microorganisms[J]. Soils, 2021, 53(2): 236-242. | |
[15] |
Ma YP, Wang XY, Nie XL, et al. Microbial degradation of chlorogenic acid by a Sphingomonas sp. strain[J]. Appl Biochem Biotechnol, 2016, 179(8): 1381-1392.
doi: 10.1007/s12010-016-2071-2 URL |
[16] |
柴阿丽, 韩云, 武军, 等. 基于FDA-PI双荧光复染法的茄病镰刀菌孢子活性检测[J]. 中国农业科学, 2015, 48(14): 2757-2766.
doi: 10.3864/j.issn.0578-1752.2015.14.007 |
Chai AL, Han Y, Wu J, et al. Determination of spore viability of Fusarium solani based on dual fluorescence assay[J]. Sci Agric Sin, 2015, 48(14): 2757-2766. | |
[17] | 蔡文, 吴鑫颖, 张倩颖, 等. 高斯芽孢杆菌产中性蛋白酶条件优化及其对烟叶发酵的影响[J]. 食品与发酵科技, 2022, 58(3): 92-98, 118. |
Cai W, Wu XY, Zhang QY, et al. Optimization of neutral protease production by Bacillus kochii and its effect on fermentation of tobacco leaf[J]. Sichuan Food Ferment, 2022, 58(3): 92-98, 118. | |
[18] |
Wu XY, Cai W, Zhu PC, et al. Profiling the role of microorganisms in quality improvement of the aged flue-cured tobacco[J]. BMC Microbiol, 2022, 22(1): 197.
doi: 10.1186/s12866-022-02597-9 pmid: 35965316 |
[19] |
Zheng TF, Zhang QY, Li PH, et al. Analysis of microbial community, volatile flavor compounds, and flavor of cigar tobacco leaves from different regions[J]. Front Microbiol, 2022, 13: 907270.
doi: 10.3389/fmicb.2022.907270 URL |
[20] | 邹云曼, 邱树毅, 郑佳, 等. 基于原位培养和传统培养分析比较不同储存期酱香大曲的细菌群落[J]. 食品与发酵工业, 2022. DOI:10.13995/j.cnki.11-1802/ts.034005. |
Zou YM, He SY, Zheng J, et al. Comparative analysis of bacterial community of high temperature Daqu with different storage periods based on in situ cultivation and traditional cultivation[J]. Food Ferment Ind, 2022. DOI:10.13995/j.cnki.11-1802/ts.034005. | |
[21] |
陈泽斌, 夏振远, 雷丽萍, 等. 非培养方法解析烟草根部内生细菌的群落结构[J]. 华北农学报, 2012, 27(1): 201-209.
doi: 10.3969/j.issn.1000-7091.2012.01.038 |
Chen ZB, Xia ZY, Lei LP, et al. Investigation of endophytic bacterial community structure within the tobacco roots using culture-independent techniques[J]. Acta Agric Boreali Sin, 2012, 27(1): 201-209. | |
[22] | 陈泽斌, 夏振远, 雷丽萍, 等. 云南烟草内生细菌菌群密度及分布特征[J]. 西南农业学报, 2014, 27(2): 682-687. |
Chen ZB, Xia ZY, Lei LP, et al. Study on population density and distribution characteristics of endophytic bacteria in tobacco in Yunnan[J]. Southwest China J Agric Sci, 2014, 27(2): 682-687. | |
[23] | 翟妞, 许亚龙, 刘萍萍, 等. 植物研究中的流式细胞术及其在烟草中的应用进展[J]. 烟草科技, 2018, 51(9): 98-104. |
Zhai N, Xu YL, Liu PP, et al. Applications of flow cytometry in plant and tobacco research[J]. Tob Sci Technol, 2018, 51(9): 98-104. | |
[24] |
Zheng TF, Zhang QY, Peng Z, et al. Metabolite-based cell sorting workflow for identifying microbes producing carbonyls in tobacco leaves[J]. Appl Microbiol Biotechnol, 2022, 106(11): 4199-4209.
doi: 10.1007/s00253-022-11982-3 |
[25] | 徐慧, 杨根华, 张敏, 等. 云南烟草叶片内生及叶际细菌、真菌多样性研究[J]. 云南农业大学学报: 自然科学, 2014(2): 149-154. |
Xu H, Yang GH, Zhang M, et al. Analysis of diversity of endophytes and phyllospheric microorganism from Yunnan tobacco leaves[J]. J Yunnan Agric Univ Nat Sci, 2014(2): 149-154. | |
[26] | 王玉华, 王德权, 高政绪, 等. 烤烟自然醇化过程中类胡萝卜素降解产物含量变化及其与感官质量的关系[J]. 浙江农业科学, 2020, 61(2): 340-344, 394. |
Wang YH, Wang DQ, Gao ZX, et al. Changes of carotenoid degradation products during natural aging of flue-cured tobacco and its relationship with sensory quality[J]. J Zhejiang Agric Sci, 2020, 61(2): 340-344, 394. | |
[27] | 刘晶, 张文军, 白晓莉, 等. 国内外不同雪茄烟综合品质对比分析[J]. 西南农业学报, 2022, 35(1): 81-89. |
Liu J, Zhang WJ, Bai XL, et al. Comparison and analysis on comprehensive quality of different cigar tobacco at home and abroad[J]. Southwest China J Agric Sci, 2022, 35(1): 81-89. | |
[28] | 王鹏泽, 来苗, 陶陶, 等. 不同香型烤烟主要香味物质成分与香韵指标的关系研究[J]. 中国农业科技导报, 2015, 17(3): 126-135. |
Wang PZ, Lai M, Tao T, et al. Relationships between main aroma constituents and aroma notes index of flue-cured tobacco leaves of different flavor styles[J]. J Agric Sci Technol, 2015, 17(3): 126-135. | |
[29] | 姜慧娟, 赵铭钦, 任伟, 等. 浓香型烤烟中性致香成分及多酚含量与香气质量的关系研究[J]. 中国烟草学报, 2014, 20(5): 25-30. |
Jiang HJ, Zhao MQ, Ren W, et al. Relationships between neutral aroma constituents, polyphenol contents and aroma quality of flue-cured tobacco of strong lfavor type[J]. Acta Tabacaria Sin, 2014, 20(5): 25-30. | |
[30] | 茅中一, 洪祖灿, 刘加增, 等. 基于香气活性值的福建尤溪烟叶提取物香气特征成分分析[J]. 烟草科技, 2020, 53(10): 56-65. |
Mao ZY, Hong ZC, Liu JZ, et al. Characteristic aroma components in tobacco extracts from Youxi based on odor activity value[J]. Tob Sci Technol, 2020, 53(10): 56-65. | |
[31] | 任汝周, 李佛琳, 胡小东, 等. 调制工艺对烤烟调制过程中类胡萝卜素降解以及烟叶品质的影响[J]. 江苏农业科学, 2018, 46(22): 198-203. |
Ren RZ, Li FL, Hu XD, et al. Effects of curing technology on carotenoid degradation and tobacco quality during curing[J]. Jiangsu Agric Sci, 2018, 46(22): 198-203. | |
[32] | 陈伦旺. 陈化烟叶微生物的分离鉴定及其在烟叶发酵中的应用[D]. 杨凌: 西北农林科技大学, 2020. |
Chen LW. Isolation and identification of microorganisms from aged tobacco leaves and their application in tobacco fermentation[D]. Yangling: Northwest A & F University, 2020. |
[1] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[2] | 江海溶, 崔若琪, 王玥, 白淼, 张明露, 任连海. NH3和H2S降解功能菌的分离鉴定及降解特性研究[J]. 生物技术通报, 2023, 39(9): 246-254. |
[3] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[4] | 徐发迪, 徐康, 孙东明, 李萌蕾, 赵建志, 鲍晓明. 基于杨木(Populus sp.)的二代燃料乙醇技术研究进展[J]. 生物技术通报, 2023, 39(9): 27-39. |
[5] | 张岳一, 兰社益, 裴海闰, 封棣. 多菌种联用发酵燕麦麸皮工艺优化及发用功效评价[J]. 生物技术通报, 2023, 39(9): 58-70. |
[6] | 程亚楠, 张文聪, 周圆, 孙雪, 李玉, 李庆刚. 乳酸乳球菌生产2'-岩藻糖基乳糖的途径构建及发酵培养基优化[J]. 生物技术通报, 2023, 39(9): 84-96. |
[7] | 赵思佳, 王晓璐, 孙纪录, 田健, 张杰. 代谢工程改造毕赤酵母生产赤藓糖醇[J]. 生物技术通报, 2023, 39(8): 137-147. |
[8] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[9] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[10] | 潘虎, 周子琼, 田云. 三株异菌脲高效降解菌株的筛选、鉴定及其降解特性分析[J]. 生物技术通报, 2023, 39(6): 298-307. |
[11] | 王羽, 尹铭绅, 尹晓燕, 奚家勤, 杨建伟, 牛秋红. 烟草甲体内烟碱降解菌的筛选、鉴定及降解特性[J]. 生物技术通报, 2023, 39(6): 308-315. |
[12] | 张晶, 张浩睿, 曹云, 黄红英, 曲萍, 张志萍. 嗜热纤维素降解菌研究进展[J]. 生物技术通报, 2023, 39(6): 73-87. |
[13] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[14] | 马玉倩, 孙东辉, 岳浩峰, 辛佳瑜, 刘宁, 曹志艳. 具有辅助降解纤维素功能的大斑刚毛座腔菌糖苷水解酶GH61的鉴定、异源表达及功能分析[J]. 生物技术通报, 2023, 39(4): 124-135. |
[15] | 李善家, 雷雨昕, 孙梦格, 刘海锋, 王兴敏. 种子内生细菌多样性与植物互馈作用研究进展[J]. 生物技术通报, 2023, 39(4): 166-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||