生物技术通报 ›› 2024, Vol. 40 ›› Issue (2): 55-64.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0841
朱恬仪1,2(), 孔桂美1,2(), 焦红梅1,2, 郭停停1,2, 乌日汗1,2, 刘翠翠1,2, 高成凤1,2, 李国才1,2()
收稿日期:
2023-08-29
出版日期:
2024-02-26
发布日期:
2024-03-13
通讯作者:
孔桂美,女,博士,副教授,硕士生导师,研究方向:病原微生物;E-mail: gmkong@yzu.edu.cn;作者简介:
朱恬仪,女,硕士研究生,研究方向:病原生物学;E-mail: 15705273927@163.com
基金资助:
ZHU Tian-yi1,2(), KONG Gui-mei1,2(), JIAO Hong-mei1,2, GUO Ting-ting1,2, WU Ri-han1,2, LIU Cui-cui1,2, GAO Cheng-feng1,2, LI Guo-cai1,2()
Received:
2023-08-29
Published:
2024-02-26
Online:
2024-03-13
摘要:
【目的】鲍曼不动杆菌(Acinetobacter baumannii, AB)是引起医院内感染的重要条件致病菌之一,耐药性AB是目前防治的棘手问题。细菌外排泵是引起耐药性的重要原因之一,拟通过PCR检测鲍曼不动杆菌耐药结节分化家族(resistance-nodulation-division,RND)外排泵基因adeLFGH的分布,探索其与耐药性的关系;建立adeG耐药基因模型,利用CRISPR/Cas9系统对其进行靶向敲除的初步研究。【方法】运用肉汤微量稀释法检测耐药性分布;PCR筛查13株临床分离多重耐药鲍曼不动杆菌adeLFGH外排泵基因并分析其分布;扩增RND外排泵关键基因adeG并构建耐药细菌模型;设计特异性sgRNA,利用CRISPR/Cas9系统进行靶向敲除,药敏实验检测其敲除效果。【结果】13株临床鲍曼不动杆菌对多黏菌素E敏感,对左氧氟沙星耐药率较低,仅为38.5%,对头孢他啶的耐药率为92.3%,对妥布霉素耐药率为84.6%,对其他临床常见药物耐药率均为100%。13株多重耐药鲍曼不动杆菌adeLFGH携带率为100%。药敏实验结果显示adeG模型耐药菌株的哌拉西林、替卡西林/克拉维酸以及哌拉西林/他唑巴坦由敏感转为耐药,氯霉素、美罗培南、米诺环素由敏感转为中介。特异性sgRNA介导CRISPR/Cas9系统靶向敲除效率不同。pCas9-sgRNA1(adeG)靶向后哌拉西林/他唑巴坦的耐药性得到了逆转,对妥布霉素、四环素、多西环素、米诺环素的耐药性也有不同程度的降低;pCas9-sgRNA2(adeG)和pCas9-sgRNA3(adeG)使哌拉西林/他唑巴坦由耐药恢复到了中介,但对其他药物的耐药性逆转效果并不显著。【结论】特异性 CRISPR/Cas9 系统可以特异性敲除耐药基因,提示可为耐药菌的治疗提供新的思路和方法。
朱恬仪, 孔桂美, 焦红梅, 郭停停, 乌日汗, 刘翠翠, 高成凤, 李国才. CRISPR/Cas9介导的adeG基因敲除大肠杆菌细菌模型的建立[J]. 生物技术通报, 2024, 40(2): 55-64.
ZHU Tian-yi, KONG Gui-mei, JIAO Hong-mei, GUO Ting-ting, WU Ri-han, LIU Cui-cui, GAO Cheng-feng, LI Guo-cai. Establishment of A Bacterial Model of CRISPR/Cas9 Mediated adeG Gene Knockout in Escherichia coli[J]. Biotechnology Bulletin, 2024, 40(2): 55-64.
引物名称 Name of primer | 引物序列 Sequence of primer(5'-3') | 退火温度 Annealing temperature/℃ | 长度 Size of production/bp | 参考文献 Reference |
---|---|---|---|---|
adeF-F | GGTGTCGACCAAGATAAACG | 55 | 207 | [ |
adeF-R | GTGAATTTGGCATAGGGACG | |||
adeG-F | GGTGCCCAACAAGATGGCTT | 58 | 770 | This study |
adeG-R | ATCGCGTAGTCACCAGATCC | |||
adeH-F | TGTTGTCCTCACTCATGGGA | 60 | 458 | This study |
adeH-R | TAGATCCGCTGTTGCTGCGTT | |||
adeL-F | CGAAAGGTAAAGCTGTACCGCC | 60 | 542 | This study |
adeL-R | CGACCGACCTGTAGATTTGG | |||
TadeG-F | AAGGTGCCCAACAAGATGGCTT | 57 | 3 399 | This study |
TadeG-R | AACCTCCTTAATGATCGTGTGGG | |||
sgRNA1-F | AAAACTCGCTGTTTGCTTGAGATTG | 60 | 28 | This study |
sgRNA1-R | AAACCAATCTCAAGCAAACAGCGAG | |||
sgRNA2-F | AAAACCATAGTTACGTAAGTAGGTC | 55 | 28 | This study |
sgRNA2-R | AAACGACCTACTTACGTAACTATGG | |||
sgRNA3-F | AAAACCACCGCGACCGAAATTGTGA | 62 | 28 | This study |
sgRNA3-R | AAACTCACAATTTCGGTCGCGGTGG | |||
DocF | GAAACAAGCGCTCATGAGCCCG | 60 | 524 | This study |
表1 本实验使用引物
Table 1 Primers used in this study
引物名称 Name of primer | 引物序列 Sequence of primer(5'-3') | 退火温度 Annealing temperature/℃ | 长度 Size of production/bp | 参考文献 Reference |
---|---|---|---|---|
adeF-F | GGTGTCGACCAAGATAAACG | 55 | 207 | [ |
adeF-R | GTGAATTTGGCATAGGGACG | |||
adeG-F | GGTGCCCAACAAGATGGCTT | 58 | 770 | This study |
adeG-R | ATCGCGTAGTCACCAGATCC | |||
adeH-F | TGTTGTCCTCACTCATGGGA | 60 | 458 | This study |
adeH-R | TAGATCCGCTGTTGCTGCGTT | |||
adeL-F | CGAAAGGTAAAGCTGTACCGCC | 60 | 542 | This study |
adeL-R | CGACCGACCTGTAGATTTGG | |||
TadeG-F | AAGGTGCCCAACAAGATGGCTT | 57 | 3 399 | This study |
TadeG-R | AACCTCCTTAATGATCGTGTGGG | |||
sgRNA1-F | AAAACTCGCTGTTTGCTTGAGATTG | 60 | 28 | This study |
sgRNA1-R | AAACCAATCTCAAGCAAACAGCGAG | |||
sgRNA2-F | AAAACCATAGTTACGTAAGTAGGTC | 55 | 28 | This study |
sgRNA2-R | AAACGACCTACTTACGTAACTATGG | |||
sgRNA3-F | AAAACCACCGCGACCGAAATTGTGA | 62 | 28 | This study |
sgRNA3-R | AAACTCACAATTTCGGTCGCGGTGG | |||
DocF | GAAACAAGCGCTCATGAGCCCG | 60 | 524 | This study |
图2 adeLFGH PCR电泳图
Fig. 2 PCR gel electrophoresis of adeLFGH A: adeL; B: adeF; C: adeG; D: adeH. M: DL 2000 marker; 1: AB13; 2: AB7;3: AB31; 4: AB29; 5: AB19; 6: AB18; 7: AB32; 8: AB15; 9: AB14; 10: AB21;11: AB2; 12: AB34; 13: AB26
菌株 Strain | 药物及折点Drugs and breakpoints/(μg·μL-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PRL | TIC | CAZ | TET | MEM | PE | GEN | TOP | CIP | LVX | ||
(32-64) | (32-64) | (16) | (8) | (4) | (≥4) | (8) | (8) | (2) | (4) | ||
17978 | <4(S) | <4(S) | 2(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | |
AB13 | >256(R) | >256(R) | >128(R) | >128(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | >32(R) | <2(S) | |
AB7 | >256(R) | >256(R) | >128(R) | >128(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB31 | >256(R) | >256(R) | >128(R) | >128(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB29 | >256(R) | >256(R) | 64(R) | >256(R) | 64(R) | <0.5(S) | 128(R) | <2(S) | 32(R) | 32(R) | |
AB19 | >256(R) | >256(R) | >128(R) | 256(R) | 64(R) | <0.5(S) | >128(R) | <2(S) | >32(R) | 8(R) | |
AB18 | >256(R) | >256(R) | 128(R) | 256(R) | 32(R) | <0.5(S) | >128(R) | >128(R) | 16(R) | 4(I) | |
AB32 | >256(R) | >256(R) | >128(R) | 256(R) | 32(R) | <0.5(S) | >128(R) | >128(R) | 8(R) | <2(S) | |
AB15 | >256(R) | >256(R) | 8(S) | >256(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 8(R) | |
AB14 | >256(R) | >256(R) | >128(R) | 256(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB21 | >256(R) | >256(R) | 64(R) | >256(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB2 | >256(R) | >256(R) | >128(R) | 128(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB34 | >256(R) | >256(R) | 128(R) | >256(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 8(R) | |
AB26 | >256(R) | >256(R) | >128(R) | 256(R) | 32(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 8(R) |
表2 ATCC 17978和13株鲍曼不动杆菌对临床常见抗菌药物的药敏结果
Table 2 Sensitivity results of ATCC 17978 and 13 strains of A. baumannii to common clinical antibiotics
菌株 Strain | 药物及折点Drugs and breakpoints/(μg·μL-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PRL | TIC | CAZ | TET | MEM | PE | GEN | TOP | CIP | LVX | ||
(32-64) | (32-64) | (16) | (8) | (4) | (≥4) | (8) | (8) | (2) | (4) | ||
17978 | <4(S) | <4(S) | 2(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | |
AB13 | >256(R) | >256(R) | >128(R) | >128(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | >32(R) | <2(S) | |
AB7 | >256(R) | >256(R) | >128(R) | >128(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB31 | >256(R) | >256(R) | >128(R) | >128(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB29 | >256(R) | >256(R) | 64(R) | >256(R) | 64(R) | <0.5(S) | 128(R) | <2(S) | 32(R) | 32(R) | |
AB19 | >256(R) | >256(R) | >128(R) | 256(R) | 64(R) | <0.5(S) | >128(R) | <2(S) | >32(R) | 8(R) | |
AB18 | >256(R) | >256(R) | 128(R) | 256(R) | 32(R) | <0.5(S) | >128(R) | >128(R) | 16(R) | 4(I) | |
AB32 | >256(R) | >256(R) | >128(R) | 256(R) | 32(R) | <0.5(S) | >128(R) | >128(R) | 8(R) | <2(S) | |
AB15 | >256(R) | >256(R) | 8(S) | >256(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 8(R) | |
AB14 | >256(R) | >256(R) | >128(R) | 256(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB21 | >256(R) | >256(R) | 64(R) | >256(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB2 | >256(R) | >256(R) | >128(R) | 128(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB34 | >256(R) | >256(R) | 128(R) | >256(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 8(R) | |
AB26 | >256(R) | >256(R) | >128(R) | 256(R) | 32(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 8(R) |
图4 adeG-E.coli质粒构建PCR鉴定 M: DL 5000 Marker;1:阴性对照;2-3:adeG-E.coli 单克隆
Fig. 4 PCR identification of constructed adeG-E.coli plasmid M: DL 5000 Marker;1:negative control;2-3:adeG-E.coli monoclone
图5 DH5α与adeG-E.coli药敏比较 1:氯霉素;2:磷霉素;3:呋喃妥因;4:环丙沙星;5:氨曲南;6:亚胺培南;7:庆大霉素;8:美罗培南;9:妥布霉素;10:四环素;11:多西环素;12:米诺环素;13:哌拉西林;14:替卡西林/克拉维酸;15:哌拉西林/他唑巴坦;16:头孢他啶;17:头孢吡肟;18:左氧氟沙星
Fig. 5 Comparison of adeG-E.coli and DH5α sensitivity to drug 1: Chloramphenicol. 2: Fosfomycin. 3: Furantoin. 4: Ciprofloxacin. 5: Amtronam. 6: Imipenem.7: Gentamicin. 8: Meropenem. 9: Tobramycin. 10: Tetracycline. 11: Doxycycline. 12: Minocycline. 13 Piperacillin. 14: Ticacillin/Clavulanic acid. 15: Piperacillin/Tazobactam. 16: Ceftazidime. 17: Cefepime. 18: Levofloxacin
药物 Drug | 折点 Breakpoints/mm | DH5α抑菌圈直径 Antibacterial circle diameter of DH5α /mm | adeG-E.coli抑菌圈直径 Antibacterial circle diameter of adeG-E.coli /mm | 耐药性变化 Changes in drug resistance |
---|---|---|---|---|
Chloramphenicol | 13-17 | 20 | 16 | S→I |
Fosfomycin | 13-15 | 40 | 32 | S→S |
Furantoin | 15-16 | 33 | 31 | S→S |
Ciprofloxacin | 22-25 | 40 | 30 | S→S |
Amtronam | 18-20 | 33 | 28 | S→S |
Imipenem | 20-22 | 31 | 26 | S→S |
Gentamicin | 13-14 | 22 | 26 | S→S |
Meropenem | 20-22 | 26 | 22 | S→I |
Tobramycin | 13-14 | 23 | 23 | S→S |
Tetracycline | 12-14 | 19 | 17 | S→S |
Doxycycline | 11-13 | 18 | 16 | S→S |
Minocycline | 13-15 | 15 | 13 | S→I |
Piperacillin | 18-20 | 28 | 0 | S→R |
Ticacillin/Clavulanic acid | 15-19 | 28 | 0 | S→R |
Piperacillin/Tazobactam | 18-20 | 26 | 17 | S→R |
Ceftazidime | 18-20 | 28 | 23 | S→S |
Cefepime | 19-24 | 34 | 25 | S→S |
Levofloxacin | 17-20 | 35 | 33 | S→S |
表3 DH5α与adeG-E.coli药敏变化
Table 3 Changes in the sensitivity of DH5α and adeG-E.coli to drugs
药物 Drug | 折点 Breakpoints/mm | DH5α抑菌圈直径 Antibacterial circle diameter of DH5α /mm | adeG-E.coli抑菌圈直径 Antibacterial circle diameter of adeG-E.coli /mm | 耐药性变化 Changes in drug resistance |
---|---|---|---|---|
Chloramphenicol | 13-17 | 20 | 16 | S→I |
Fosfomycin | 13-15 | 40 | 32 | S→S |
Furantoin | 15-16 | 33 | 31 | S→S |
Ciprofloxacin | 22-25 | 40 | 30 | S→S |
Amtronam | 18-20 | 33 | 28 | S→S |
Imipenem | 20-22 | 31 | 26 | S→S |
Gentamicin | 13-14 | 22 | 26 | S→S |
Meropenem | 20-22 | 26 | 22 | S→I |
Tobramycin | 13-14 | 23 | 23 | S→S |
Tetracycline | 12-14 | 19 | 17 | S→S |
Doxycycline | 11-13 | 18 | 16 | S→S |
Minocycline | 13-15 | 15 | 13 | S→I |
Piperacillin | 18-20 | 28 | 0 | S→R |
Ticacillin/Clavulanic acid | 15-19 | 28 | 0 | S→R |
Piperacillin/Tazobactam | 18-20 | 26 | 17 | S→R |
Ceftazidime | 18-20 | 28 | 23 | S→S |
Cefepime | 19-24 | 34 | 25 | S→S |
Levofloxacin | 17-20 | 35 | 33 | S→S |
图6 pCas9-sgRNA(adeG)质粒构建
Fig. 6 Construction of pCas9-sgRNA(adeG)plasmid M: DL 2000 marker; 1: pCas9-sgRNA1(adeG); 2: pCas9-sgRNA2(adeG);3: pCas9-sgRNA3(adeG)
图7 pCas9-sgRNA(adeG)对部分药敏纸片结果 A-13:哌拉西林;A-14:替卡西林/克拉维酸;A-15:哌拉西林/他唑巴坦;B-9:妥布霉素;B-10:四环素;B-11:多西环素;B-12:米诺环素
Fig. 7 Results of pCas9-sgRNA(adeG)on some drug sensitivity paper slides A-13: Piperacillin. A-14: Ticacillin/Clavulanic acid. A-15: Piperacillin/Tazobactam. B-9: Tobramycin. B-10: Tetracycline. B-11: Doxycycline. B-12: Minocycline
菌株Strain | 抑菌圈直径Antibacterial circle diameter /mm | 耐药性变化Changes in drug resistance |
---|---|---|
adeG-E.coli | 17 | - |
pCas9-sgRNA1(adeG) | 25 | R→S |
pCas9-sgRNA2(adeG) | 20 | R→I |
pCas9-sgRNA3(adeG) | 20 | R→I |
表4 pCas9-sgRNA在哌拉西林/他唑巴坦中的药敏变化(与adeG-E.coli相比)
Table 4 Drug sensitivity changes of pCas9-sgRNA in piperacillin/tazobactam(compared to adeG-E.coli)
菌株Strain | 抑菌圈直径Antibacterial circle diameter /mm | 耐药性变化Changes in drug resistance |
---|---|---|
adeG-E.coli | 17 | - |
pCas9-sgRNA1(adeG) | 25 | R→S |
pCas9-sgRNA2(adeG) | 20 | R→I |
pCas9-sgRNA3(adeG) | 20 | R→I |
药物Drug | 抑菌圈直径Antibacterial circle diameter /mm | ||
---|---|---|---|
adeG-E.coli | pCas9-sgRNA1(adeG) | ||
Tobramycin | 15 | 20 | |
Tetracycline | 20 | 26 | |
Doxycycline | 18 | 22 | |
Minocycline | 19 | 24 |
表5 pCas9-sgRNA1(adeG)的部分药敏变化(与adeG-E.coli相比)
Table 5 Partial drug sensitivity changes of pCas9-sgRNA1(adeG)(compared to adeG-E.coli)
药物Drug | 抑菌圈直径Antibacterial circle diameter /mm | ||
---|---|---|---|
adeG-E.coli | pCas9-sgRNA1(adeG) | ||
Tobramycin | 15 | 20 | |
Tetracycline | 20 | 26 | |
Doxycycline | 18 | 22 | |
Minocycline | 19 | 24 |
图8 pCas9-sgRNA(adeG)质粒靶向adeG 基因型鉴定
Fig. 8 Identification of pCas9-sgRNA(adeG)plasmid targeted adeG gene M: DL 5000 marker; 1: adeG-E.coli; 2: pCas9; 3: pCas9-sgRNA1(adeG);4: pCas9-sgRNA2(adeG); 5: pCas9-sgRNA3(adeG)
[1] |
Fritzenwanker M, Imirzalioglu C, Herold S, et al. Treatment options for carbapenem- resistant gram-negative infections[J]. Dtsch Arztebl Int, 2018, 115(20-21): 345-352.
doi: 10.3238/arztebl.2018.0345 pmid: 29914612 |
[2] |
Mat Rahim N, Lee H, Strych U, et al. Facing the challenges of multidrug-resistant Acinetobacter baumannii: progress and prospects in the vaccine development[J]. Hum Vaccin Immunother, 2021, 17(10): 3784-3794.
doi: 10.1080/21645515.2021.1927412 URL |
[3] |
Bian XC, Liu XF, et al. Epidemiological and genomic characteristics of Acinetobacter baumannii from different infection sites using comparative genomics[J]. BMC Genomics, 2021, 22(1): 530.
doi: 10.1186/s12864-021-07842-5 |
[4] |
Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis[J]. Lancet Infect Dis, 2018, 18(3): 318-327.
doi: S1473-3099(17)30753-3 pmid: 29276051 |
[5] |
Pulingam T, Parumasivam T, et al. Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome[J]. Eur J Pharm Sci, 2022, 170: 106103.
doi: 10.1016/j.ejps.2021.106103 URL |
[6] |
Lipsitch M, Samore MH. Antimicrobial use and antimicrobial resistance: a population perspective[J]. Emerg Infect Dis, 2002, 8(4): 347-354.
pmid: 11971765 |
[7] |
Rice LB. Antimicrobial resistance in gram-positive bacteria[J]. Am J Infect Control, 2006, 34(5 Suppl 1): S11-S19; discussion S64-S73.
doi: 10.1016/j.ajic.2006.05.220 pmid: 16813977 |
[8] |
Collaborators AR. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis[J]. Lancet, 2022, 399(10325): 629-655.
doi: 10.1016/S0140-6736(21)02724-0 pmid: 35065702 |
[9] | Adams CP, Brantner VV. Estimating the cost of new drug development: is it really 802 million dollars?[J]. Health Aff(Millwood), 2006, 25(2): 420-428. |
[10] |
Sulaiman JE, Lam H. Evolution of bacterial tolerance under antibiotic treatment and its implications on the development of resistance[J]. Front Microbiol, 2021, 12: 617412.
doi: 10.3389/fmicb.2021.617412 URL |
[11] |
Tao S, Chen HM, Li N, et al. The application of the CRISPR-cas system in antibiotic resistance[J]. Infect Drug Resist, 2022, 15: 4155-4168.
doi: 10.2147/IDR.S370869 pmid: 35942309 |
[12] |
Luo ML, Leenay RT, Beisel CL. Current and future prospects for CRISPR-based tools in bacteria[J]. Biotechnol Bioeng, 2016, 113(5): 930-943.
doi: 10.1002/bit.25851 pmid: 26460902 |
[13] |
de la Fuente-Núñez C, Lu TK. CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects[J]. Integr Biol, 2017, 9(2): 109-122.
doi: 10.1039/c6ib00140h URL |
[14] |
Junaid M, Thirapanmethee K, et al. CRISPR-based gene editing in Acinetobacter baumannii to combat antimicrobial resistance[J]. Pharmaceuticals, 2023, 16(7): 920.
doi: 10.3390/ph16070920 URL |
[15] |
Yao SG, Wu XY, Li Y, et al. Harnessing the native type I-F CRISPR-cas system of Acinetobacter baumannii for genome editing and gene repression[J]. Int J Antimicrob Agents, 2023, 62(5): 106962.
doi: 10.1016/j.ijantimicag.2023.106962 URL |
[16] |
Wang YH, Yang J, Sun XL, et al. CRISPR-cas in Acinetobacter baumannii contributes to antibiotic susceptibility by targeting endogenous AbaI[J]. Microbiol Spectr, 2022, 10(4): e0082922.
doi: 10.1128/spectrum.00829-22 URL |
[17] |
Guo TT, Yang J, Sun XL, et al. Whole-genome analysis of Acinetobacter baumannii strain AB43 containing a type I-fb CRISPR-cas system: insights into the relationship with drug resistance[J]. Molecules, 2022, 27(17): 5665.
doi: 10.3390/molecules27175665 URL |
[18] |
Meyer C, Lucaβen K, Gerson S, et al. Contribution of RND-type efflux pumps in reduced susceptibility to biocides in Acinetobacter baumannii[J]. Antibiotics, 2022, 11(11): 1635.
doi: 10.3390/antibiotics11111635 URL |
[19] |
Gil-Gil T, Laborda P, et al. Efflux in Gram-negative bacteria: what are the latest opportunities for drug discovery?[J]. Expert Opin Drug Discov, 2023, 18(6): 671-686.
doi: 10.1080/17460441.2023.2213886 URL |
[20] |
Dehbanipour R, Ghalavand Z. Acinetobacter baumannii: Pathogenesis, virulence factors, novel therapeutic options and mechanisms of resistance to antimicrobial agents with emphasis on tigecycline[J]. J Clin Pharm Ther, 2022, 47(11): 1875-1884.
doi: 10.1111/jcpt.13787 pmid: 36200470 |
[21] | Kaviani R, Pouladi I, Niakan M, et al. Molecular detection of Adefg efflux pump genes and their contribution to antibiotic resistance in Acinetobacter baumannii clinical isolates[J]. Rep Biochem Mol Biol, 2020, 8(4): 413-418. |
[22] |
Karlapudi AP, Venkateswarulu TC, Tammineedi J, et al. In silico sgRNA tool design for CRISPR control of quorum sensing in Acinetobacter species[J]. Genes Dis, 2018, 5(2): 123-129.
doi: 10.1016/j.gendis.2018.03.004 pmid: 30258941 |
[23] |
Li HN, Wang XJ, Zhang YW, et al. The role of RND efflux pump and global regulators in tigecycline resistance in clinical Acinetobacter baumannii isolates[J]. Future Microbiol, 2015, 10(3): 337-346.
doi: 10.2217/fmb.15.7 URL |
[24] |
Pasqua M, Bonaccorsi di Patti MC, Fanelli G, et al. Host - bacterial pathogen communication: the wily role of the multidrug efflux pumps of the MFS family[J]. Front Mol Biosci, 2021, 8: 723274.
doi: 10.3389/fmolb.2021.723274 URL |
[25] |
Paul D, Mallick S, Das S, et al. Colistin induced assortment of antimicrobial resistance in a clinical isolate of Acinetobacter baumannii SD01[J]. Infect Disord Drug Targets, 2020, 20(4): 501-505.
doi: 10.2174/1871526519666190426153258 URL |
[26] |
Roy S, Chowdhury G, Mukhopadhyay AK, et al. Convergence of biofilm formation and antibiotic resistance in Acinetobacter baumannii infection[J]. Front Med, 2022, 9: 793615.
doi: 10.3389/fmed.2022.793615 URL |
[27] | Darby EM, Bavro VN, Dunn S, et al. RND pumps across the genus Acinetobacter: AdeIJK is the universal efflux pump[J]. Microb Genom, 2023, 9(3): mgen000964. |
[28] |
Coyne S, Courvalin P, Périchon B. Efflux-mediated antibiotic resistance in Acinetobacter spp[J]. Antimicrob Agents Chemother, 2011, 55(3): 947-953.
doi: 10.1128/AAC.01388-10 URL |
[29] |
Marchand I, Damier-Piolle L, Courvalin P, et al. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system[J]. Antimicrob Agents Chemother, 2004, 48(9): 3298-3304.
doi: 10.1128/AAC.48.9.3298-3304.2004 URL |
[30] |
Damier-Piolle L, Magnet S, Brémont S, et al. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2008, 52(2): 557-562.
doi: 10.1128/AAC.00732-07 pmid: 18086852 |
[31] |
Coyne S, Rosenfeld N, Lambert T, et al. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2010, 54(10): 4389-4393.
doi: 10.1128/AAC.00155-10 URL |
[32] |
Naidu V, Bartczak A, Brzoska AJ, et al. Evolution of RND efflux pumps in the development of a successful pathogen[J]. Drug Resist Updat, 2023, 66: 100911.
doi: 10.1016/j.drup.2022.100911 URL |
[33] |
Chen WZ, Zhang YF, Yeo WS, et al. Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system[J]. J Am Chem Soc, 2017, 139(10): 3790-3795.
doi: 10.1021/jacs.6b13317 URL |
[34] |
Wan P, Cui SY, Ma ZB, et al. Reversal of mcr-1-mediated colistin resistance in Escherichia coli by CRISPR-Cas9 system[J]. Infect Drug Resist, 2020, 13: 1171-1178.
doi: 10.2147/IDR.S244885 URL |
[35] |
Dong HS, Xiang H, Mu D, et al. Exploiting a conjugative CRISPR/Cas9 system to eliminate plasmid harbouring the mcr-1 gene from Escherichia coli[J]. Int J Antimicrob Agents, 2019, 53(1): 1-8.
doi: 10.1016/j.ijantimicag.2018.09.017 URL |
[36] | Zhu YM. Advances in CRISPR/Cas9[J]. Biomed Res Int, 2022, 2022: 9978571. |
[37] |
Cho SW, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J]. Genome Res, 2014, 24(1): 132-141.
doi: 10.1101/gr.162339.113 pmid: 24253446 |
[38] |
Pattanayak V, Lin S, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nat Biotechnol, 2013, 31(9): 839-843.
doi: 10.1038/nbt.2673 pmid: 23934178 |
[39] |
Mayorga-Ramos A, Zúñiga-Miranda J, Carrera-Pacheco SE, et al. CRISPR-cas-based antimicrobials: design, challenges, and bacterial mechanisms of resistance[J]. ACS Infect Dis, 2023, 9(7): 1283-1302.
doi: 10.1021/acsinfecdis.2c00649 URL |
[40] |
Prensky H, Gomez-Simmonds A, Uhlemann AC, et al. Conjugation dynamics depend on both the plasmid acquisition cost and the fitness cost[J]. Mol Syst Biol, 2021, 17(3): e9913.
doi: 10.15252/msb.20209913 pmid: 33646643 |
[41] |
Tagliaferri TL, Guimarães NR, Pereira MPM, et al. Exploring the potential of CRISPR-Cas9 under challenging conditions: facing high-copy plasmids and counteracting beta-lactam resistance in clinical strains of Enterobacteriaceae[J]. Front Microbiol, 2020, 11: 578.
doi: 10.3389/fmicb.2020.00578 pmid: 32425894 |
[1] | 高登科, 马白荣, 郭怡莹, 刘薇, 刘田, 靳亚平, 江舟, 陈华涛. 利用CRISPR/Cas9技术构建Quaking敲除的小鼠胚胎成纤维细胞株[J]. 生物技术通报, 2024, 40(2): 65-72. |
[2] | 张宏民, 龙雯, 劳筱清, 陈雯妍, 商雪梅, 王洪连, 王丽, 粟宏伟, 沈宏萍, 沈宏春. 利用CRISPR/Cas9技术构建Pmepa1基因敲除的TCMK1小鼠肾小管上皮细胞系[J]. 生物技术通报, 2024, 40(2): 73-79. |
[3] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[4] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[5] | 施炜涛, 姚春鹏, 魏文康, 王蕾, 房元杰, 仝钰洁, 马晓姣, 蒋文, 张晓爱, 邵伟. 利用CRISPR/Cas9技术构建MDH2敲除细胞株及抗呕吐毒素效应研究[J]. 生物技术通报, 2023, 39(7): 307-315. |
[6] | 陈勇, 李亚鑫, 王亚瑄, 梁露洁, 冯思源, 田国宝. MCR-1介导多黏菌素耐药性的分子机制研究进展[J]. 生物技术通报, 2023, 39(6): 102-108. |
[7] | 刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91. |
[8] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
[9] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[10] | 王兵, 赵会纳, 余婧, 陈杰, 骆梅, 雷波. 利用CRISPR/Cas9系统研究REVOLUTA参与烟草叶芽发育的调控[J]. 生物技术通报, 2023, 39(10): 197-208. |
[11] | 李双喜, 华进联. 抗猪繁殖与呼吸障碍综合征基因编辑猪研究进展[J]. 生物技术通报, 2023, 39(10): 50-57. |
[12] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[13] | 文畅, 刘晨, 卢诗韵, 许忠兵, 艾超凡, 廖汉鹏, 周顺桂. 一株新的多重耐药福氏志贺菌噬菌体生物学特性及基因组分析[J]. 生物技术通报, 2022, 38(9): 127-135. |
[14] | 胡功政, 崔小蝶, 翟亚军, 贺丹丹. 细菌黏菌素耐药性及其逆转机制研究进展[J]. 生物技术通报, 2022, 38(9): 28-34. |
[15] | 刘艺云, 邓利敏, 岳慧颖, 岳超, 刘健华. 质粒接合转移及其抑制剂的研究进展[J]. 生物技术通报, 2022, 38(9): 35-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||