生物技术通报 ›› 2024, Vol. 40 ›› Issue (4): 139-147.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1099
陈强1,2(), 黄馨慧1, 张峥3, 张冲1(), 柳叶飞2
收稿日期:
2023-11-21
出版日期:
2024-04-26
发布日期:
2024-04-30
通讯作者:
张冲,女,博士,讲师,研究方向:西甜瓜采后生理与分子生物学;E-mail: 352628403@qq.com作者简介:
陈强,男,硕士,实验师,研究方向:逆境生理与分子生物学;E-mail: chq521900@126.com
基金资助:
CHEN Qiang1,2(), HUANG Xin-hui1, ZHANG Zheng3, ZHANG Chong1(), LIU Ye-fei2
Received:
2023-11-21
Published:
2024-04-26
Online:
2024-04-30
摘要:
【目的】褪黑素在采后果实保鲜中发挥重要作用,探究褪黑素对薄皮甜瓜采后软化和乙烯合成的影响。【方法】以0、100、200、300、400 μmol/L褪黑素溶液浸泡薄皮甜瓜‘花姑娘’果实,测定果实的硬度、失重率、腐烂率以及内源乙烯生成量,筛选出最适采后保鲜的浓度。比较褪黑素与对照果实的ACC含量、ACS以及ACO酶活性,并通过转录组测序技术,筛选出与果实软化和乙烯合成相关的差异表达基因,并通过实时荧光定量技术进行验证。【结果】在贮藏期间,200 μmol/L的褪黑素处理可明显地降低薄皮甜瓜‘花姑娘’果实的失重率和腐烂率,更好地维持果实的硬度和外观。褪黑素处理可降低果实内源乙烯和ACC含量,但并未延迟高峰期的出现。转录组测序表明,褪黑素和对照在果实软化和乙烯合成途径中存在差异表达基因,褪黑素显著抑制CmPG1、CmPLB1、CmACO1、CmACO2、CmACS1、CmEXP等结构基因的表达,并且部分ERF和LBD转录因子的表达也受到了抑制。【结论】应用200 μmol/L的褪黑素处理‘花姑娘’可以有效延缓果实软化、重量损失,降低内源乙烯生成量,通过抑制果实软化及乙烯合成相关基因的表达,延长果实的货架期。
陈强, 黄馨慧, 张峥, 张冲, 柳叶飞. 褪黑素对薄皮甜瓜采后软化和乙烯合成的影响[J]. 生物技术通报, 2024, 40(4): 139-147.
CHEN Qiang, HUANG Xin-hui, ZHANG Zheng, ZHANG Chong, LIU Ye-fei. Effects of Melatonin on the Fruit Softening and Ethylene Synthesis of Post-harvest Oriental Melon[J]. Biotechnology Bulletin, 2024, 40(4): 139-147.
图1 不同浓度褪黑素对薄皮甜瓜果实腐烂率的影响 小写字母代表P<0.05水平下差异显著,下同
Fig. 1 Effects of different concentrations of melatonin on the decay rates of oriental melon Lowercase letters indicate significant differences at the P<0.05 level. The same below
图3 不同浓度褪黑素处理后对薄皮甜瓜采后果实硬度和失重率的影响
Fig. 3 Effects of different concentrations of melatonin treatment on the firmness and weightlessness in the fruit of post-harvest oriental melon
图4 褪黑素处理对果实内源乙烯生成量(A)、ACC含量(B)、ACS酶活性(C)、ACO酶活性(D)的影响
Fig. 4 Effects of melatonin treatment on the ethylene production(A), content of ACC(B)and the activities of ACS(C)and ACO(D)in the fruit of post-harvest oriental melon
图5 样品间差异表达基因维恩图和基因表达火山图 A:维恩图为总DEGs;B、C、D、E分别表示CK 3 d与 MT 3 d、CK 6 d与MT 6 d、CK 3 d与 CK 6 d、MT 3 d 与 MT 6 d 的差异表达火山图。CK代表对照组,MT代表褪黑素处理组
Fig. 5 Wayne diagram of differentially expressed genes and Volcano diagram of gene expression between samples A: Venn diagrams of total DEGs. B, C, D and E indicate CK 3 d and MT 3 d, CK 6 d and MT 6 d, and CK 3 d and CK 6 d, and MT 3 d and MT 6 d respectively. CK indicate the control group, MT indicate the melatonin treated group
图6 褪黑素处理和对照组样品差异基因KEGG通路富集分析 A:对照3 d和褪黑素处理3 d(CK3 d vs MT 3 d);B:对照6 d和褪黑素处理6 d(CK 6 d vs MT 6 d)
Fig. 6 Enrichment analysis of differential gene KEGG pathway between melatonin treated and control group samples A: KEGG enrichment of gene set in CK3 d vs MT 3 d. B: KEGG enrichment of gene set in CK6 d vs MT6 d
图7 外源褪黑素处理对采后薄皮甜瓜果实软化及乙烯合成的关键结构基因和转录因子的共表达分析 每个圆圈的面积指的是与所示的每个基因共表达的DEGs的数量
Fig. 7 Co-expression analysis of key structural genes and transcription factors involved in softening and ethylene synthesis of post-harvest oriental melon fruits treated with exogenous melatonin The area of each circle refers to the number of DEGs co-expressed with each gene shown
图8 外源褪黑素处理对采后薄皮甜瓜果实软化及乙烯合成基因表达的影响 A:果实软化相关差异基因表达热图;B:果实乙烯合成相关差异基因表达热图;C:差异基因间相关性系数图谱
Fig. 8 Effects of melatonin treatment on the gene expressions in the fruit of post-harvest oriental melon A: Heat map of differential gene expression related to fruit softening. B: Heat map of differentially expressed genes related to fruit ethylene synthesis. C: Correlation coefficient map between differentially expressed genes
[1] | 孙浩轩. 壳聚糖和乙醇复合处理对薄皮甜瓜采后贮藏品质的影响[D]. 长春: 吉林农业大学, 2021. |
Sun HX. Effect of chitosan and ethanol compound treatment on postharvest storage quality of thin-skinned melon[D]. Changchun: Jilin Agricultural University, 2021. | |
[2] |
Kaleem MM, Nawaz MA, Alam SM, et al. Rootstock-scion interaction mediated impact on fruit quality attributes of thick-skinned melon during storage under different temperature regimes[J]. Sci Hortic, 2023, 312: 111823.
doi: 10.1016/j.scienta.2022.111823 URL |
[3] |
Li Y, Qi HY, Liu YF, et al. Effects of ethephon and 1-methylcyclopropene on fruit ripening and the biosynthesis of volatiles in oriental sweet melon(Cucumis melo var. makuwa Makino)[J]. J Hortic Sci Biotechnol, 2011, 86(5): 517-526.
doi: 10.1080/14620316.2011.11512798 URL |
[4] |
Liu WW, Qi HY, Xu BH, et al. Ethanol treatment inhibits internal ethylene concentrations and enhances ethyl ester production during storage of oriental sweet melons(Cucumis melo var. makuwa Makino)[J]. Postharvest Biol Technol, 2012, 67: 75-83.
doi: 10.1016/j.postharvbio.2011.12.015 URL |
[5] |
Giordano A, Santo Domingo M, Quadrana L, et al. CRISPR/Cas9 gene editing uncovers the roles of constitutive triple response 1 and repressor of silencing 1 in melon fruit ripening and epigenetic regulation[J]. J Exp Bot, 2022, 73(12): 4022-4033.
doi: 10.1093/jxb/erac148 pmid: 35394503 |
[6] |
Aghdam MS, Luo ZS, Li L, et al. Melatonin treatment maintains nutraceutical properties of pomegranate fruits during cold storage[J]. Food Chem, 2020, 303: 125385.
doi: 10.1016/j.foodchem.2019.125385 URL |
[7] | Posmyk MM, Janas KM. Melatonin in plants[J]. Acta Physiol Plant, 2009, 31(1): 213. |
[8] |
Liu N, Jin ZY, Wang SS, et al. Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato[J]. Sci Hortic, 2015, 181: 18-25.
doi: 10.1016/j.scienta.2014.10.049 URL |
[9] |
Shan SS, Wang ZQ, Pu HL, et al. DNA methylation mediated by melatonin was involved in ethylene signal transmission and ripening of tomato fruit[J]. Sci Hortic, 2022, 291: 110566.
doi: 10.1016/j.scienta.2021.110566 URL |
[10] |
胡苗, 李佳颖, 饶景萍. 褪黑素处理对采后猕猴桃果实后熟衰老的影响[J]. 食品科学, 2018, 39(19): 226-232.
doi: 10.7506/spkx1002-6630-201819035 |
Hu M, Li JY, Rao JP. Effect of melatonin on ripening and senescence of postharvest kiwifruits[J]. Food Sci, 2018, 39(19): 226-232.
doi: 10.1111/jfds.1974.39.issue-2 URL |
|
[11] |
Zhang YT, Tang HL, Lei DY, et al. Exogenous melatonin maintains postharvest quality in kiwiberry fruit by regulating sugar metabolism during cold storage[J]. LWT, 2023, 174: 114385.
doi: 10.1016/j.lwt.2022.114385 URL |
[12] | 刘帅民, 胡康琦, 刘港帅, 等. 外源褪黑素处理对鲜切芒果贮藏品质的影响[J]. 食品科学, 2020, 41(21): 160-166. |
Liu SM, Hu KQ, Liu GS, et al. Effect of exogenous melatonin treatment on storage quality of fresh-cut mango[J]. Food Sci, 2020, 41(21): 160-166. | |
[13] |
Rastegar S, Hassanzadeh Khankahdani H, Rahimzadeh M. Effects of melatonin treatment on the biochemical changes and antioxidant enzyme activity of mango fruit during storage[J]. Sci Hortic, 2020, 259: 108835.
doi: 10.1016/j.scienta.2019.108835 URL |
[14] |
Onik JC, Wai SC, Li A, et al. Melatonin treatment reduces ethylene production and maintains fruit quality in apple during postharvest storage[J]. Food Chem, 2021, 337: 127753.
doi: 10.1016/j.foodchem.2020.127753 URL |
[15] |
Liu JL, Yue RR, Si M, et al. Effects of exogenous application of melatonin on quality and sugar metabolism in ‘zaosu’ pear fruit[J]. J Plant Growth Regul, 2019, 38(3): 1161-1169.
doi: 10.1007/s00344-019-09921-0 |
[16] | 刘佳欣, 李灿婴, 蒋超男, 等. 外源褪黑素对‘南果梨’果实贮藏品质和细胞壁降解酶的影响[J]. 食品科学, 2022, 43(13): 155-162. |
Liu JX, Li CY, Jiang CN, et al. Effects of exogenous melatonin on storage quality and cell wall-degrading enzymes of ‘Nanguo’ pears[J]. Food Sci, 2022, 43(13): 155-162. | |
[17] |
Gao H, Zhang ZK, Chai HK, et al. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit[J]. Postharvest Biol Technol, 2016, 118: 103-110.
doi: 10.1016/j.postharvbio.2016.03.006 URL |
[18] | 王锋, 杨青珍, 赵旗峰, 等. 外源褪黑素对甜樱桃果实褐变和品质的影响[J]. 食品工业科技, 2022, 43(5): 340-347. |
Wang F, Yang QZ, Zhao QF, et al. Effect of exogenous melatonin treatment on browning and quality of sweet cherry[J]. Sci Technol Food Ind, 2022, 43(5): 340-347. | |
[19] |
Song LJ, Zhang WW, Li Q, et al. Melatonin alleviates chilling injury and maintains postharvest quality by enhancing antioxidant capacity and inhibiting cell wall degradation in cold-stored eggplant fruit[J]. Postharvest Biol Technol, 2022, 194: 112092.
doi: 10.1016/j.postharvbio.2022.112092 URL |
[20] | Ma WY, Xu LL, et al. Melatonin alters the secondary metabolite profile of grape berry skin by promoting VvMYB14-mediated ethylene biosynthesis[J]. Hortic Res, 2021, 8(1): 43. |
[21] | 丁名. 杂交薄皮甜瓜新品种选择方法[J]. 植物医生, 2016, 29(11): 28-34. |
Ding M. Selection method of new hybrid thin-skinned melon varieties[J]. Plant Health Med, 2016, 29(11): 28-34. | |
[22] | 侯田莹, 宋曙辉, 郑淑芳, 等. 1-甲基环丙烯处理对不同成熟度薄皮甜瓜贮藏特性的影响[J]. 中国瓜菜, 2012, 25(2): 6-10. |
Hou TY, Song SH, Zheng SF, et al. Effects of 1-MCP on storage characteristics and quality of oriental melon with different maturity[J]. China Cucurbits Veg, 2012, 25(2): 6-10. | |
[23] |
Sati H, Khandelwal A, Pareek S. Effect of exogenous melatonin in fruit postharvest, crosstalk with hormones, and defense mechanism for oxidative stress management[J]. Food Front, 2023, 4(1): 233-261.
doi: 10.1002/fft2.v4.1 URL |
[24] |
巩彪, 史庆华. 园艺作物褪黑素的研究进展[J]. 中国农业科学, 2017, 50(12): 2326-2337.
doi: 10.3864/j.issn.0578-1752.2017.12.013 |
Gong B, Shi QH. Review of melatonin in horticultural crops[J]. Sci Agric Sin, 2017, 50(12): 2326-2337.
doi: 10.3864/j.issn.0578-1752.2017.12.013 |
|
[25] |
Sun QQ, Zhang N, Wang JF, et al. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life[J]. J Exp Bot, 2015, 66(3): 657-668.
doi: 10.1093/jxb/eru332 pmid: 25147270 |
[26] |
Liu JL, Zhang RM, Sun YK, et al. The beneficial effects of exogenous melatonin on tomato fruit properties[J]. Sci Hortic, 2016, 207: 14-20.
doi: 10.1016/j.scienta.2016.05.003 URL |
[27] | 孙润荻. 外源物质处理对薄皮甜瓜果实品质形成及采后贮藏的影响[D]. 武汉: 华中农业大学, 2023. |
Sun RD. Effect of exogenous substance treatment on fruitquality formation and postharvest storage of thin-skinned melon[D]. Wuhan: Huazhong Agriculture University, 2023. | |
[28] | 何欢, 刘昭雪, 等. 外源褪黑素通过调控活性氧代谢减轻采后杏果实冷害[J]. 食品科学, 2022, 43(5): 168-174. |
He H, Liu ZX, et al. Exogenous melatonin ameliorates postharvest chilling injury of apricot fruit by modulating reactive oxygen species metabolism[J]. Food Sci, 2022, 43(5): 168-174.
doi: 10.1111/jfds.1978.43.issue-1 URL |
|
[29] | 薛建新, 王凯, 等. 采后褪黑素处理对鲜切花椰菜保鲜品质及货架期的影响[J]. 农业工程学报, 2021, 37(13): 273-283. |
Xue JX, Wang K, et al. Influences of post-harvest melatonin treatment on preservation quality and shelf life of fresh-cut cauliflower[J]. Trans Chin Soc Agric Eng, 2021, 37(13): 273-283. | |
[30] |
陈强, 邹明康, 宋家敏, 等. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1264 |
Chen Q, Zou MK, Song JM, et al. Identification and analysis of LBD gene family and expression analysis of fruit development in Cucumis melo[J]. Biotechnol Bull, 2023, 39(3): 176-183. |
[1] | 陈春林, 李白雪, 李金玲, 杜清洁, 李猛, 肖怀娟. 甜瓜CmEPF基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(4): 130-138. |
[2] | 张玉, 石磊, 巩檑, 聂峰杰, 杨江伟, 刘璇, 杨文静, 张国辉, 颉瑞霞, 张丽. 马铃薯WOX基因家族的鉴定及在离体再生和非生物胁迫中的表达分析[J]. 生物技术通报, 2024, 40(3): 170-180. |
[3] | 吴星星, 洪海波, 甘志承, 李瑞宁, 黄先忠. 辣椒CaPI的克隆与功能分析[J]. 生物技术通报, 2024, 40(3): 193-201. |
[4] | 江林琪, 赵佳莹, 郑飞雄, 姚馨怡, 李效贤, 俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(3): 229-241. |
[5] | 吴圳, 张明英, 闫锋, 李依民, 高静, 颜永刚, 张岗. 掌叶大黄(Rheum palmatum L.)WRKY基因家族鉴定与分析[J]. 生物技术通报, 2024, 40(1): 250-261. |
[6] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[7] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[8] | 刘奎, 李兴芬, 杨沛欣, 仲昭晨, 曹一博, 张凌云. 青杄转录共激活因子PwMBF1c的功能研究与验证[J]. 生物技术通报, 2023, 39(5): 205-216. |
[9] | 赖瑞联, 冯新, 高敏霞, 路喻丹, 刘晓驰, 吴如健, 陈义挺. 猕猴桃过氧化氢酶基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2023, 39(4): 136-147. |
[10] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[11] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[12] | 姚晓文, 梁晓, 陈青, 伍春玲, 刘迎, 刘小强, 税军, 乔阳, 毛奕茗, 陈银华, 张银东. 二斑叶螨抗性木薯木质素合成途径基因表达特性研究[J]. 生物技术通报, 2023, 39(2): 161-171. |
[13] | 李彦霞, 王晋鹏, 冯芬, 包斌武, 董益闻, 王兴平, 罗仍卓么. 大肠杆菌型奶牛乳房炎对产奶性状相关基因表达的影响[J]. 生物技术通报, 2023, 39(2): 274-282. |
[14] | 任丽, 乔舒婷, 葛晨辉, 魏梓桐, 徐晨曦. 菠菜PSY基因家族的鉴定与表达分析[J]. 生物技术通报, 2023, 39(12): 169-178. |
[15] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||