生物技术通报 ›› 2024, Vol. 40 ›› Issue (4): 130-138.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0969
陈春林(), 李白雪, 李金玲, 杜清洁, 李猛, 肖怀娟(
)
收稿日期:
2023-10-18
出版日期:
2024-04-26
发布日期:
2024-04-30
通讯作者:
肖怀娟,女,博士,副教授,研究方向:设施蔬菜逆境调控机理;E-mail: xhj234@126.com作者简介:
陈春林,男,硕士研究生,研究方向:设施蔬菜逆境调控机理;E-mail: ccl980401@163.com
基金资助:
CHEN Chun-lin(), LI Bai-xue, LI Jin-ling, DU Qing-jie, LI Meng, XIAO Huai-juan(
)
Received:
2023-10-18
Published:
2024-04-26
Online:
2024-04-30
摘要:
【目的】表皮模式因子(epidermal patterning factor, EPF)是一类植物特有的分泌蛋白,在植物生长发育特别是气孔形态建成过程中发挥着重要作用,旨为揭示甜瓜EPF基因的特性和功能。【方法】对甜瓜CmEPF基因家族进行基因组鉴定,利用生物信息学手段对其基因结构、系统进化以及组织表达特性进行分析。【结果】甜瓜基因组存在11个可分为3个亚家族的CmEPF成员,它们的基因结构相对保守,含有1-3个内含子,且大都分布于甜瓜的叶绿体上;基于系统进化分析将其分为3个亚家族。不同器官RT-qPCR分析发现,CmEPFs基因在甜瓜器官中广泛表达,但不同家族成员在不同器官中的表达模式存在差异,其在第二片叶表达量较高,且气孔密度、光合速率和蒸腾速率最高,其表达量与光合参数和气孔密度显著相关。【结论】CmEPFs基因通过影响甜瓜的气孔密度,影响其光合作用,从而调控甜瓜叶片气孔对外界环境的响应。
陈春林, 李白雪, 李金玲, 杜清洁, 李猛, 肖怀娟. 甜瓜CmEPF基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(4): 130-138.
CHEN Chun-lin, LI Bai-xue, LI Jin-ling, DU Qing-jie, LI Meng, XIAO Huai-juan. Identification and Expression Analysis of Epidermal Patterning Factor (EPF) Genes in Cucumis melo[J]. Biotechnology Bulletin, 2024, 40(4): 130-138.
基因Gene | 序列号Sequence ID | 蛋白长度Protein length/aa | 分子量Molecular mass/kD | 等电点pI | 亚细胞定位Subcellular localization |
---|---|---|---|---|---|
CmEPF1 | MELO3C019934 | 117 | 13 284.50 | 8.85 | 叶绿体Chloroplast |
CmEPF2 | MELO3C028633 | 95 | 10 118.80 | 8.48 | 叶绿体Chloroplast |
CmEPFL1 | MELO3C013075 | 115 | 12 993.08 | 8.95 | 叶绿体Chloroplast |
CmEPFL2 | MELO3C011120 | 153 | 17 572.13 | 9.44 | 细胞核Nucleus |
CmEPFL3 | MELO3C007746 | 134 | 14 956.48 | 8.88 | 质膜Plasma membrane |
CmEPFL4 | MELO3C007667 | 131 | 14 680.19 | 9.67 | 叶绿体Chloroplast |
CmEPFL5 | MELO3C021111 | 114 | 12 973.17 | 9.69 | 叶绿体Chloroplast |
CmEPFL6 | MELO3C014284 | 108 | 11 965.11 | 9.36 | 叶绿体Chloroplast |
CmEPFL7 | MELO3C017882 | 107 | 12 057.17 | 9.17 | 质膜Plasma membrane |
CmEPFL8 | MELO3C031683 | 152 | 17 238.58 | 6.58 | 叶绿体Chloroplast |
CmEPFL9 | MELO3C029250 | 122 | 13 519.80 | 9.13 | 叶绿体Chloroplast |
表1 11个甜瓜CmEPFs基因的基本信息
Table 1 Basic information of 11 melon CmEPFs genes
基因Gene | 序列号Sequence ID | 蛋白长度Protein length/aa | 分子量Molecular mass/kD | 等电点pI | 亚细胞定位Subcellular localization |
---|---|---|---|---|---|
CmEPF1 | MELO3C019934 | 117 | 13 284.50 | 8.85 | 叶绿体Chloroplast |
CmEPF2 | MELO3C028633 | 95 | 10 118.80 | 8.48 | 叶绿体Chloroplast |
CmEPFL1 | MELO3C013075 | 115 | 12 993.08 | 8.95 | 叶绿体Chloroplast |
CmEPFL2 | MELO3C011120 | 153 | 17 572.13 | 9.44 | 细胞核Nucleus |
CmEPFL3 | MELO3C007746 | 134 | 14 956.48 | 8.88 | 质膜Plasma membrane |
CmEPFL4 | MELO3C007667 | 131 | 14 680.19 | 9.67 | 叶绿体Chloroplast |
CmEPFL5 | MELO3C021111 | 114 | 12 973.17 | 9.69 | 叶绿体Chloroplast |
CmEPFL6 | MELO3C014284 | 108 | 11 965.11 | 9.36 | 叶绿体Chloroplast |
CmEPFL7 | MELO3C017882 | 107 | 12 057.17 | 9.17 | 质膜Plasma membrane |
CmEPFL8 | MELO3C031683 | 152 | 17 238.58 | 6.58 | 叶绿体Chloroplast |
CmEPFL9 | MELO3C029250 | 122 | 13 519.80 | 9.13 | 叶绿体Chloroplast |
图1 甜瓜和拟南芥EPF蛋白的系统进化分析 红色、绿色和蓝色分别代表拟南芥、水稻和甜瓜的EPF蛋白
Fig. 1 Phylogenetic analysis of EPF protein in melon and Arabidopsis Red, green, and blue indicates EPF proteins from Arabidopsis, rice, and melon, respectively
图6 CmEPFs基因在甜瓜不同部位叶片中的表达分析 L0:甜瓜的心叶;L1:甜瓜从上到下第1片叶;L2:甜瓜从上到下第2片叶L3:甜瓜从上到下第3片叶L4:甜瓜从上到下第4片叶。不同小写字母表示处理间差异显著(P<0.05)。下同
Fig. 6 Expression analysis of CmEPFs gene in the leaves in different parts of melon L0: Heart leaf of melon; L1: melon from top to first leaf; L2: melon from top to second leaf; L3: melon from top to third leaf; L4: melon from top to fourth leaf. Different lowercase letters indicate significant difference among treatments(P<0.05). The same below
处理Treatment | 气孔密度Stomatal density/(个·mm-2) | 气孔指数Stomatal index | 气孔长度Stomatal length/μm | 气孔宽度Stomatal width/μm |
---|---|---|---|---|
L0 | 649.8±87.9 a | 0.240±0.028 a | 17.59±0.41 d | 13.48±0.33 a |
L1 | 624.1±81.14a | 0.257±0.024 a | 20.26±0.52 c | 13.26±0.57 a |
L2 | 460.4±44.6 b | 0.269±0.018 a | 21.46±0.45b c | 14.09±0.34 a |
L3 | 351.0±19.2 b | 0.282±0.011 a | 22.47±0.44 ab | 13.07±0.27 a |
L4 | 391.9±38.7 b | 0.285±0.018 a | 23.06±0.79 a | 13.54±0.33 a |
表2 不同部位叶片的气孔形态
Table 2 Stomatal morphology of leaves in different parts
处理Treatment | 气孔密度Stomatal density/(个·mm-2) | 气孔指数Stomatal index | 气孔长度Stomatal length/μm | 气孔宽度Stomatal width/μm |
---|---|---|---|---|
L0 | 649.8±87.9 a | 0.240±0.028 a | 17.59±0.41 d | 13.48±0.33 a |
L1 | 624.1±81.14a | 0.257±0.024 a | 20.26±0.52 c | 13.26±0.57 a |
L2 | 460.4±44.6 b | 0.269±0.018 a | 21.46±0.45b c | 14.09±0.34 a |
L3 | 351.0±19.2 b | 0.282±0.011 a | 22.47±0.44 ab | 13.07±0.27 a |
L4 | 391.9±38.7 b | 0.285±0.018 a | 23.06±0.79 a | 13.54±0.33 a |
图8 CmEPFs基因与光合参数、气孔密度、气孔指数的相关性分析 *表示处理间差异在P<0.05水平显著,**表示处理间差异在P<0.01水平显著
Fig. 8 Correlation analysis of CmEPFs gene with photosynthetic parameters, stomatal density and stomatal index * indicates that the difference between treatments is significant at P<0.05 level, ** indicates that the difference between treatments is significant at P<0.01 level
[1] | Agurla S, Gahir S, Munemasa S, et al. Mechanism of stomatal closure in plants exposed to drought and cold stress[M]// Survival Strategies in Extreme Cold and Desiccation. Singapore: Springer, 2018: 215-232. |
[2] |
罗丹丹, 王传宽, 金鹰. 植物应对干旱胁迫的气孔调节[J]. 应用生态学报, 2019, 30(12): 4333-4343.
doi: 10.13287/j.1001-9332.201912.004 |
Luo DD, Wang CK, Jin Y. Stomatal regulation of plants in response to drought stress[J]. Chin J Appl Ecol, 2019, 30(12): 4333-4343. | |
[3] |
Harrison EL, Arce Cubas L, Gray JE, et al. The influence of stomatal morphology and distribution on photosynthetic gas exchange[J]. Plant J, 2020, 101(4): 768-779.
doi: 10.1111/tpj.14560 |
[4] |
Bertolino LT, Caine RS, Gray JE. Impact of stomatal density and morphology on water-use efficiency in a changing world[J]. Front Plant Sci, 2019, 10: 225.
doi: 10.3389/fpls.2019.00225 pmid: 30894867 |
[5] |
Li YP, Li HB, Li YY, et al. Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat[J]. Crop J, 2017, 5(3): 231-239.
doi: 10.1016/j.cj.2017.01.001 |
[6] | 刘婧, 王宝山, 谢先芝. 植物气孔发育及其调控研究[J]. 遗传, 2011, 33(2): 131-137. |
Liu J, Wang BS, Xie XZ. Regulation of stomatal development in plants[J]. Hereditas, 2011, 33(2): 131-137. | |
[7] |
Lau OS, Bergmann DC. Stomatal development: a plant's perspective on cell polarity, cell fate transitions and intercellular communication[J]. Development, 2012, 139(20): 3683-3692.
pmid: 22991435 |
[8] | Takata N, Yokota K, Ohki S, et al. Evolutionary relationship and structural characterization of the EPF/EPFL gene family[J]. PLoS One, 2013, 8(6): e65183. |
[9] |
Uchida N, Tasaka M. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases[J]. J Exp Bot, 2013, 64(17): 5335-5343.
doi: 10.1093/jxb/ert196 pmid: 23881395 |
[10] |
Hara K, Yokoo T, Kajita R, et al. Epidermal cell density is autoregulated via a secretory peptide, epidermal patterning factor 2 in Arabidopsis leaves[J]. Plant Cell Physiol, 2009, 50(6): 1019-1031.
doi: 10.1093/pcp/pcp068 URL |
[11] |
Lee JS, Hnilova M, Maes M, et al. Competitive binding of antagonistic peptides fine-tunes stomatal patterning[J]. Nature, 2015, 522(7557): 439-443.
doi: 10.1038/nature14561 |
[12] | Caine RS, Chater CC, Kamisugi Y, et al. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens[J]. Development, 2016, 143(18): 3306-3314. |
[13] |
Hughes J, Hepworth C, Dutton C, et al. Reducing stomatal density in barley improves drought tolerance without impacting on yield[J]. Plant Physiol, 2017, 174(2): 776-787.
doi: 10.1104/pp.16.01844 pmid: 28461401 |
[14] |
Lu JJ, He JJ, Zhou XS, et al. Homologous genes of epidermal patterning factor regulate stomatal development in rice[J]. J Plant Physiol, 2019, 234/235: 18-27.
doi: 10.1016/j.jplph.2019.01.010 URL |
[15] | 韦葳. 玉米ZmSTOMAGEN基因的克隆及表达特性分析[D]. 南宁: 广西大学, 2013. |
Wei W. Cloning and analysis of expression characteristics of ZmSTOMAGE gene in maize[D]. Nanning: Guangxi University, 2013. | |
[16] | 陈青云. 玉米中STOMAGEN-Like基因调控气孔发育的功能研究[D]. 南宁: 广西大学, 2017. |
Chen QY. Functional analysis of STOMAGEN-like gene in regulating stomatal development in maize[D]. Nanning: Guangxi University, 2017. | |
[17] |
Caine RS, Yin XJ, Sloan J, et al. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions[J]. New Phytol, 2019, 221(1): 371-384.
doi: 10.1111/nph.15344 pmid: 30043395 |
[18] |
Dunn J, Hunt L, Afsharinafar M, et al. Reduced stomatal density in bread wheat leads to increased water-use efficiency[J]. J Exp Bot, 2019, 70(18): 4737-4748.
doi: 10.1093/jxb/erz248 pmid: 31172183 |
[19] |
Wang YL, Xie T, Zhang CL, et al. Overexpression of the potato StEPF2 gene confers enhanced drought tolerance in Arabidopsis[J]. Plant Biotechnol Rep, 2020, 14(4): 479-490.
doi: 10.1007/s11816-020-00627-4 |
[20] | Liu S, Jia FL, Jiao ZY, et al. Ectopic expression of secretory peptide PdEPF3 in Arabidopsis confers drought tolerance with reduced stomatal density[J]. Acta Soc Bot Pol, 2019, 88(2): 3627. |
[21] |
Uchida N, Lee JS, Horst RJ, et al. Regulation of inflorescence architecture by intertissue layer ligand-receptor communication between endodermis and phloem[J]. Proc Natl Acad Sci USA, 2012, 109(16): 6337-6342.
doi: 10.1073/pnas.1117537109 pmid: 22474391 |
[22] |
Abrash EB, Davies KA, Bergmann DC. Generation of signaling specificity in Arabidopsis by spatially restricted buffering of ligand-receptor interactions[J]. Plant Cell, 2011, 23(8): 2864-2879.
doi: 10.1105/tpc.111.086637 URL |
[23] |
Sun QX, Qu JP, Yu Y, et al. taepfl1, an epidermal patterning factor-like(epfl)secreted peptide gene, is required for stamen development in wheat[J]. Genetica, 2019, 147(2): 121-130.
doi: 10.1007/s10709-019-00061-7 |
[24] | 孙清栩, 曲继鹏, 彭正松, 等. 小麦表皮模式建成因子基因(TaEPFL1)的克隆、定位及表达分析[J]. 分子植物育种, 2018, 16(10): 3106-3112. |
Sun QX, Qu JP, Peng ZS, et al. Cloning, localization and expression analysis of epidermal pattering factor-like gene(TaEPFL1)in wheat[J]. Mol Plant Breed, 2018, 16(10): 3106-3112. | |
[25] |
撒世娟, 伍涵宇, 温媛, 等. 叶绿体特异蛋白质表达谱对本氏烟不同气孔密度的响应[J]. 生物技术通报, 2023, 39(2): 193-202.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0506 |
Sa SJ, Wu HY, Wen Y, et al. Responses of choloroplast specific protein profile to different stomatal densities in Nicotiana benthamiana[J]. Biotechnol Bull, 2023, 39(2): 193-202. | |
[26] |
Franks PJ, Doheny-Adams TW, Britton-Harper ZJ, et al. Increasing water-use efficiency directly through genetic manipulation of stomatal density[J]. New Phytol, 2015, 207(1): 188-195.
doi: 10.1111/nph.13347 pmid: 25754246 |
[27] |
Liu S, Wang CP, Jia FL, et al. Secretory peptide PdEPF2 enhances drought tolerance by modulating stomatal density and regulates ABA response in transgenic Arabidopsis thaliana[J]. Plant Cell Tiss Organ Cult, 2016, 125(3): 419-431.
doi: 10.1007/s11240-016-0957-x URL |
[28] |
Wang CP, Liu S, Dong Y, et al. PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar[J]. Plant Biotechnol J, 2016, 14(3): 849-860.
doi: 10.1111/pbi.12434 pmid: 26228739 |
[29] | Mohammed U, Caine RS, Atkinson JA, et al. Rice plants overexpressing OsEPF1 show reduced stomatal density and increased root cortical aerenchyma formation[J]. Sci Rep, 2019, 9(1): 5584. |
[1] | 陈强, 黄馨慧, 张峥, 张冲, 柳叶飞. 褪黑素对薄皮甜瓜采后软化和乙烯合成的影响[J]. 生物技术通报, 2024, 40(4): 139-147. |
[2] | 张以恒, 刘家正, 王雪晨, 孙政哲, 薛雅郡, 汪沛, 韩华, 郑宏伟, 李晓娟. 基于超分辨成像增强对拟南芥内质网动态变化的研究[J]. 生物技术通报, 2024, 40(4): 67-76. |
[3] | 杨雨青, 谭娟, 汪芳, 彭顺利, 陈婕, 谭明燕, 吕美艳, 周富裕, 刘声传. 茶树叶绿体基因组的研究与应用进展[J]. 生物技术通报, 2024, 40(2): 20-30. |
[4] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[5] | 尹明华, 余锾媛, 肖心怡, 王玉婷. 江西铅山红芽芋叶绿体基因组特征及系统发育分析[J]. 生物技术通报, 2023, 39(6): 233-247. |
[6] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[7] | 李敬蕊, 王育博, 解紫薇, 李畅, 吴晓蕾, 宫彬彬, 高洪波. 甜瓜PIN基因家族的鉴定及高温胁迫表达分析[J]. 生物技术通报, 2023, 39(5): 192-204. |
[8] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[9] | 崔吉洁, 蔡文波, 庄庆辉, 高爱平, 黄建峰, 陈亚辉, 宋志忠. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146. |
[10] | 撒世娟, 伍涵宇, 温媛, 陈雪娜, 郑蕊, 姚新灵. 叶绿体特异蛋白质表达谱对本氏烟不同气孔密度的响应[J]. 生物技术通报, 2023, 39(2): 193-202. |
[11] | 鄢梦雨, 韦晓薇, 曹婧, 兰海燕. 异子蓬SabHLH169基因的克隆及抗旱功能分析[J]. 生物技术通报, 2023, 39(11): 328-339. |
[12] | 阮航, 多浩源, 范文艳, 吕清晗, 姜述君, 朱生伟. AtERF49在拟南芥应答盐碱胁迫中的作用[J]. 生物技术通报, 2023, 39(1): 150-156. |
[13] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[14] | 刘雄伟, 刘畅, 曾宪法, 杨小英, 俸婷婷, 赵杰宏, 周英. 朱砂根叶绿体全基因组解析及系统发育分析[J]. 生物技术通报, 2023, 39(1): 232-242. |
[15] | 郭宾会, 宋丽. 大豆孢囊线虫侵染对乙烯合成及信号传导基因表达调控的研究[J]. 生物技术通报, 2022, 38(8): 150-158. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 435
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 295
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||