生物技术通报 ›› 2024, Vol. 40 ›› Issue (4): 23-32.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1084
收稿日期:
2023-11-20
出版日期:
2024-04-26
发布日期:
2024-04-30
通讯作者:
董合忠,男,博士,研究员,研究方向:植物逆境生理;E-mail: donghezhong@163.com作者简介:
花子晴,女,硕士研究生,研究方向:植物逆境生理;E-mail: huazq@163.com
基金资助:
HUA Zi-qing1,2(), ZHOU Jing-yuan2,3, DONG He-zhong1,2()
Received:
2023-11-20
Published:
2024-04-26
Online:
2024-04-30
摘要:
出苗是植物生产的首要环节,影响甚至决定最终产量和品质。双子叶植物出苗受下胚轴生长与顶端弯钩发育的影响。下胚轴生长与顶端弯钩发育是一连续的动态过程,是种子出苗的重要保障。其中,下胚轴稳健生长是幼苗顶土出苗的动力来源,顶端弯钩则在幼苗顶土过程中保护幼嫩的子叶和顶端分生组织不受伤害。本文以下胚轴和顶端弯钩发育为重点,综述了双子叶植物通过细胞骨架的排列方式调控下胚轴伸长与增粗的分子机制,以及顶端弯钩形成、维持与展开阶段的细胞差异生长机制;阐述了光照、温度等主要环境因子和植物内源激素对下胚轴及顶端弯钩发育的协同调控效应与机理,以及播种方式和留苗数量等农艺措施通过优化环境因子调控下胚轴与顶端弯钩生长发育,提高出苗率和成苗率的效果。最后,提出了进一步研究揭示下胚轴与顶端弯钩发育的分子机制,以及弯钩和下胚轴发育对逆境的适应机制,实现在更高水平上对双子叶植物出苗成苗有效调控的意见。本文为深入认识双子叶植物出苗机制,创新植物播种保苗技术提供重要参考。
花子晴, 周静远, 董合忠. 双子叶植物下胚轴和顶端弯钩发育及其对出苗的调控机制[J]. 生物技术通报, 2024, 40(4): 23-32.
HUA Zi-qing, ZHOU Jing-yuan, DONG He-zhong. Development of Hypocotyls and Apical Hooks in Dicotyledons and Their Regulatory Mechanisms for Seedling Emergence[J]. Biotechnology Bulletin, 2024, 40(4): 23-32.
图1 双子叶植物(以棉花为例)萌发出苗过程 幼苗萌发早期,下胚轴顶端两侧细胞差异生长,顶端弯钩形成。在土壤的机械压力下,弯钩内外侧细胞差异生长加剧,下胚横向增粗,弯钩进入维持阶段。随着幼苗的向上生长,土壤的机械压力不断减小,下胚轴快速伸长,弯钩内侧细胞生长速率增大,最终弯钩和子叶的展开,幼苗顺利出苗
Fig. 1 Process of seed germination and seedling emergence in dicotyledonous plants(cotton as an example) During the early stage of seedling emergence, cells on both sides of the apical hypocotyl grow differentially to form the apical hook. Under the mechanical pressure of the soil, the differential growth of cells on the inner and outer sides of the apical hook is intensified to entere the maintenance stage, while the hypocotyl thickened laterally. With the upward growth of the seedling, the mechanical pressure of the soil decreases, the hypocotyl elongates rapidly, the growth rate of the inner cells of the apical hook increases, and finally the apical hook and the cotyledons get unfolded to complete the successful emergence
图2 影响弯钩和下胚轴发育的因素及其调控出苗成苗的机制 光照、温度等环境信号与乙烯、赤霉素等植物激素相互作用,共同调控弯钩和下胚轴发育相关的基因表达,促进植物的出苗和成苗。正常箭头表示正调控作用, T 型箭头表示负调控作用。NPR1:水杨酸受体蛋白:MYC2:茉莉酸信号通路转录因子;DELLAs:DELLA家族蛋白;BZR1:油菜素内酯受体蛋白;EBF1/2:F-box家族成员;CBF:AP2/EREBP转录因子家族成员;PIFs:光敏色素作用因子;EIN3/EIL1:EIN3/EIL1转录因子;Hookless1,Genes related to auxin:Hookless1和其他生长素合成、响应、分布相关的基因
Fig. 2 Factors influencing the development of apical hook and hypocotyl and their mechanisms in regulating seedling emergence and stand establishment Environmental signals, such as light and temperature, interact with phytohormones like ethylene and gibberellin, to jointly regulate the expressions of genes related to the development of hypocotyls and apical hooks, and to promote seedling emergence and stand establishment. Normal arrows indicate positive regulatory effects, while T-arrows indicate negative regulatory effects. PHYs/CRYs: Phytochromes/Cryptochromes; SA: salicylic acid; JA: jasmonic acid; GA: gibberellic acid; ABA: abscisic acid; BR: brassinosteroids; ET: ethylene; SL: strigolactone; NPR1: salicylic acid receptor protein; MYC2: jasmonic acid signaling pathway transcription factors; DELLAs: DELLA family proteins; BZR1: brassinosteroids receptor protein; EBF1/2: ethylene insensitive 3 binding F-box protein 1/2; CBF: AP2/EREBP transcription factor family members
[1] | 于延文. 乙烯调控拟南芥HY5蛋白稳定性和幼苗下胚轴生长[D]. 北京: 中国农业科学院, 2014. |
Yu YW. Ethylene regulates Arabidopsis HY5 protein stability and seedling hypocotyl growth[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. | |
[2] | 岳剑茹, 赫云建, 邱天麒, 等. 植物微管骨架参与下胚轴伸长调节机制研究进展[J]. 植物学报, 2021, 56(3): 363-371. |
Yue JR, He YJ, Qiu TQ, et al. Research advances in the molecular mechanisms of plant microtubules in regulating hypocotyl elongation[J]. Chin Bull Bot, 2021, 56(3): 363-371. | |
[3] |
Raz V, Ecker JR. Regulation of differential growth in the apical hook of Arabidopsis[J]. Development, 1999, 126(16): 3661-3668.
doi: 10.1242/dev.126.16.3661 pmid: 10409511 |
[4] | Josse EM, Halliday KJ. Skotomorphogenesis: the dark side of light signalling[J]. Curr Biol, 2008, 18(24): R1144-R1146. |
[5] | 杨东旭, 王昕源, 黄迪, 等. 高等植物下胚轴生长发育研究进展[J]. 黑龙江农业科学, 2023(1): 118-123. |
Yang DX, Wang XY, Huang D, et al. Advances of research on hypocotyl growth in higher plants[J]. Heilongjiang Agric Sci, 2023(1): 118-123. | |
[6] | 朱蠡庆, 王伯初, 付雪, 等. 膨压在植物细胞生长中的作用[J]. 生物物理学报, 2013, 29(8): 583-593. |
Zhu LQ, Wang BC, Fu X, et al. Turgor pressure in plant cell growth[J]. Acta Biophys Sin, 2013, 29(8): 583-593. | |
[7] |
Hu HZ, Zhang R, Feng SQ, et al. Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis[J]. Plant Biotechnol J, 2018, 16(5): 976-988.
doi: 10.1111/pbi.2018.16.issue-5 URL |
[8] |
Zhong SW, Shi H, Xue C, et al. A molecular framework of light-controlled phytohormone action in Arabidopsis[J]. Curr Biol, 2012, 22(16): 1530-1535.
doi: 10.1016/j.cub.2012.06.039 URL |
[9] | Sun JB, Ma QQ, Mao TL. Ethylene regulates the Arabidopsis microtubule-associated protein WAVE-DAMPENED2-LIKE5 in etiolated hypocotyl elongation[J]. Plant Physiol, 2015, 169(1): 325-337. |
[10] |
Jing YJ, Lin RC. Transcriptional regulatory network of the light signaling pathways[J]. New Phytol, 2020, 227(3): 683-697.
doi: 10.1111/nph.16602 pmid: 32289880 |
[11] | 江薇, 肖宁, 陆怡, 等. 植物光敏色素作用因子PIFs的生物学功能[J]. 植物生理学报, 2014, 50(6): 698-706. |
Jiang W, Xiao N, Lu Y, et al. Biological function of phytochrome-interacting factors in plant[J]. Plant Physiol J, 2014, 50(6): 698-706.
doi: 10.1104/pp.50.6.698 URL |
|
[12] | Lin CT. Blue light receptors and signal transduction[J]. Plant Cell, 2002, 14(Suppl): S207-S225. |
[13] | 唐冬英, 赵小英, 谢敏敏, 等. 隐花素在生长素调控拟南芥下胚轴伸长中的作用分析[J]. 生命科学研究, 2014, 18(2): 124-128, 183. |
Tang DY, Zhao XY, Xie MM, et al. Effect of cryptochrome on IAA regulating hypocotyls elongation in Arabidopsis thaliana[J]. Life Sci Res, 2014, 18(2): 124-128, 183. | |
[14] | Xiong HB, Lu DD, Li ZY, et al. The DELLA-ABI4-HY5 module integrates light and gibberellin signals to regulate hypocotyl elongation[J]. Plant Commun, 2023, 4(5): 100597. |
[15] |
Han X, Yu H, Yuan RR, et al. Arabidopsis transcription factor TCP5 controls plant thermomorphogenesis by positively regulating PIF4 activity[J]. iScience, 2019, 15: 611-622.
doi: 10.1016/j.isci.2019.04.005 URL |
[16] | Kim S, Hwang G, Kim S, et al. The epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway[J]. Nat Commun, 2020, 11(1): 1053. |
[17] |
Claeys H, De Bodt S, Inzé D. Gibberellins and DELLAs: central nodes in growth regulatory networks[J]. Trends Plant Sci, 2014, 19(4): 231-239.
doi: 10.1016/j.tplants.2013.10.001 pmid: 24182663 |
[18] | Wang X, Li ZY, Shi YT, et al. Strigolactones promote plant freezing tolerance by releasing the WRKY41-mediated inhibition of CBF/DREB1 expression[J]. EMBO J, 2023, 42(19): e112999. |
[19] |
Wang L, Xu Q, Yu H, et al. Strigolactone and karrikin signaling pathways elicit ubiquitination and proteolysis of SMXL2 to regulate hypocotyl elongation in Arabidopsis[J]. Plant Cell, 2020, 32(7): 2251-2270.
doi: 10.1105/tpc.20.00140 URL |
[20] |
Oh E, Zhu JY, Bai MY, et al. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl[J]. eLife, 2014, 3: e03031.
doi: 10.7554/eLife.03031 URL |
[21] | Yu ZP, Ma JX, Zhang MY, et al. Auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation in Arabidopsis[J]. Sci Adv, 2023, 9(1): eade2493. |
[22] |
Feng SH, Martinez C, Gusmaroli G, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins[J]. Nature, 2008, 451(7177): 475-479.
doi: 10.1038/nature06448 |
[23] |
Zheng YY, Cui XF, Su L, et al. Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings[J]. Plant J, 2017, 90(6): 1144-1155.
doi: 10.1111/tpj.2017.90.issue-6 URL |
[24] | 马海燕. 葡萄生长过程中内源激素含量变化的研究[D]. 杨凌: 西北农林科技大学, 2007. |
Ma HY. Changes of endogenous hormones in grapevine during its development[D]. Yangling: Northwest A & F University, 2007. | |
[25] | Lorrai R, Boccaccini A, Ruta V, et al. Abscisic acid inhibits hypocotyl elongation acting on gibberellins, DELLA proteins and auxin[J]. AoB Plants, 2018, 10(5): ply061. |
[26] | 王红飞, 李福凯, 尚庆茂. 温度、光照强度及渗透势对普通白菜下胚轴伸长的交互作用[J]. 中国蔬菜, 2017(11): 46-52. |
Wang HF, Li FK, Shang QM. Interaction of temperature, light intensity and osmotic potential on Brassica campestris L. ssp. chinensis(L.) makino var. communis tsen et lee hypocotyl elongation[J]. China Veg, 2017(11): 46-52. | |
[27] | 宋雨函, 张锐. 高等植物下胚轴伸长的调控机制[J]. 生命的化学, 2021, 41(6): 1116-1125. |
Song YH, Zhang R. Regulation mechanism of hypocotyl elongation in higher plants[J]. Chem Life, 2021, 41(6): 1116-1125. | |
[28] |
张冬梅, 张艳军, 李存东, 等. 论棉花轻简化栽培[J]. 棉花学报, 2019, 31(2): 163-168.
doi: 10.11963/1002-7807.zdmdhz.20190313 |
Zhang DM, Zhang YJ, Li CD, et al. On light and simplified cotton cultivation[J]. Cotton Sci, 2019, 31(2): 163-168.
doi: 10.11963/1002-7807.zdmdhz.20190313 |
|
[29] |
周静远, 孔祥强, 张艳军, 等. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
doi: 10.3724/SP.J.1006.2022.14116 |
Zhou JY, Kong XQ, Zhang YJ, et al. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton[J]. Acta Agron Sin, 2022, 48(5): 1051-1058.
doi: 10.3724/SP.J.1006.2022.14116 URL |
|
[30] | Shen X, Li YL, Pan Y, et al. Activation of HLS1 by mechanical stress via ethylene-stabilized EIN3 is crucial for seedling soil emergence[J]. Front Plant Sci, 2016, 7: 1571. |
[31] | Du MM, Bou Daher F, Liu YY, et al. Biphasic control of cell expansion by auxin coordinates etiolated seedling development[J]. Sci Adv, 2022, 8(2): eabj1570. |
[32] |
刘旦梅, 裴雁曦. 双子叶植物幼苗顶端弯钩发育的分子机制[J]. 中国生物化学与分子生物学报, 2018, 34(11): 1138-1145.
doi: 10.13865/j.cnki.cjbmb.2018.11.02 |
Liu DM, Pei YX. Molecular mechanism of the development of dicotyledonous seedling apical hook[J]. Chin J Biochem Mol Biol, 2018, 34(11): 1138-1145. | |
[33] |
曹文杰, 李贵生. 生长素输出载体PIN蛋白的质膜定位机制[J]. 植物学报, 2016, 51(2): 265-273.
doi: 10.11983/CBB15017 |
Cao WJ, Li GS. Plasma membrane positioning mechanism of auxin efflux carrier PIN proteins[J]. Chin Bull Bot, 2016, 51(2): 265-273. | |
[34] | Leyser O. Plant hormones: ins and outs of auxin transport[J]. Curr Biol, 1999, 9(1): R8-R10. |
[35] |
Zádníková P, Petrásek J, Marhavy P, et al. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana[J]. Development, 2010, 137(4): 607-617.
doi: 10.1242/dev.041277 pmid: 20110326 |
[36] |
Lehman A, Black R, Ecker JR. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl[J]. Cell, 1996, 85(2): 183-194.
doi: 10.1016/s0092-8674(00)81095-8 pmid: 8612271 |
[37] |
Peng Y, Zhang D, Qiu YP, et al. Growth asymmetry precedes differential auxin response during apical hook initiation in Arabidopsis[J]. J Integr Plant Biol, 2022, 64(1): 5-22.
doi: 10.1111/jipb.v64.1 URL |
[38] |
Cao M, Chen R, Li P, et al. TMK1-mediated auxin signalling regulates differential growth of the apical hook[J]. Nature, 2019, 568(7751): 240-243.
doi: 10.1038/s41586-019-1069-7 |
[39] | Ren H, Park MY, Spartz AK, et al. A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis[J]. PLoS Genet, 2018, 14(6): e1007455. |
[40] |
Aizezi Y, Shu HZ, Zhang LL, et al. Cytokinin regulates apical hook development via the coordinated actions of EIN3/EIL1 and PIF transcription factors in Arabidopsis[J]. J Exp Bot, 2022, 73(1): 213-227.
doi: 10.1093/jxb/erab403 URL |
[41] | Holtkotte X, Ponnu J, Ahmad M, et al. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling[J]. PLoS Genet, 2017, 13(10): e1007044. |
[42] |
Oh J, Park E, Song K, et al. PHYTOCHROME INTERACTING FACTOR8 inhibits phytochrome A-mediated far-red light responses in Arabidopsis[J]. Plant Cell, 2020, 32(1): 186-205.
doi: 10.1105/tpc.19.00515 URL |
[43] |
Wang JJ, Sun N, Zhang FF, et al. SAUR17 and SAUR50 differentially regulate PP2C-D1 during apical hook development and Cotyledon opening in Arabidopsis[J]. Plant Cell, 2020, 32(12): 3792-3811.
doi: 10.1105/tpc.20.00283 URL |
[44] |
Xiong JW, Yang FB, Wei F, et al. Inhibition of SIZ1-mediated SUMOylation of HOOKLESS1 promotes light-induced apical hook opening in Arabidopsis[J]. Plant Cell, 2023, 35(6): 2027-2043.
doi: 10.1093/plcell/koad072 URL |
[45] |
Shi H, Shen X, Liu RL, et al. The red light receptor phytochrome B directly enhances substrate-E3 ligase interactions to attenuate ethylene responses[J]. Dev Cell, 2016, 39(5): 597-610.
doi: 10.1016/j.devcel.2016.10.020 pmid: 27889482 |
[46] |
Xu P, Chen HR, Li T, et al. Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins regulate gibberellin signaling and photomorphogenesis in Arabidopsis[J]. Plant Cell, 2021, 33(7): 2375-2394.
doi: 10.1093/plcell/koab124 URL |
[47] |
Jung JH, Domijan M, Klose C, et al. Phytochromes function as thermosensors in Arabidopsis[J]. Science, 2016, 354(6314): 886-889.
doi: 10.1126/science.aaf6005 URL |
[48] |
Jin HH, Pang L, Fang S, et al. High ambient temperature antagonizes ethylene-induced exaggerated apical hook formation in etiolated Arabidopsis seedlings[J]. Plant Cell Environ, 2018, 41(12): 2858-2868.
doi: 10.1111/pce.v41.12 URL |
[49] |
Shibasaki K, Uemura M, Tsurumi S, et al. Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms[J]. Plant Cell, 2009, 21(12): 3823-3838.
doi: 10.1105/tpc.109.069906 URL |
[50] |
Wang YC, Guo HW. On hormonal regulation of the dynamic apical hook development[J]. New Phytol, 2019, 222(3): 1230-1234.
doi: 10.1111/nph.15626 pmid: 30537131 |
[51] |
Guo HW, Ecker JR. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor[J]. Cell, 2003, 115(6): 667-677.
doi: 10.1016/s0092-8674(03)00969-3 pmid: 14675532 |
[52] |
An FY, Zhang X, Zhu ZQ, et al. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings[J]. Cell Res, 2012, 22(5): 915-927.
doi: 10.1038/cr.2012.29 |
[53] |
Wang JJ, Sun N, Zheng LD, et al. Brassinosteroids promote etiolated apical structures in darkness by amplifying the ethylene response via the EBF-EIN3/PIF3 circuit[J]. Plant Cell, 2023, 35(1): 390-408.
doi: 10.1093/plcell/koac316 URL |
[54] |
Chory J, Nagpal P, Peto CA. Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis[J]. Plant Cell, 1991, 3(5): 445-459.
doi: 10.2307/3869351 URL |
[55] |
Huang PX, Dong Z, Guo PR, et al. Salicylic acid suppresses apical hook formation via NPR1-mediated repression of EIN3 and EIL1 in Arabidopsis[J]. Plant Cell, 2020, 32(3): 612-629.
doi: 10.1105/tpc.19.00658 URL |
[56] |
Zhang JJ, Chen WY, Li XP, et al. Jasmonates regulate apical hook development by repressing brassinosteroid biosynthesis and signaling[J]. Plant Physiol, 2023, 193(2): 1561-1579.
doi: 10.1093/plphys/kiad399 pmid: 37467431 |
[57] |
Mazzella MA, Casal JJ, Muschietti JP, et al. Hormonal networks involved in apical hook development in darkness and their response to light[J]. Front Plant Sci, 2014, 5: 52.
doi: 10.3389/fpls.2014.00052 pmid: 24616725 |
[58] | 晋欢欢. 高温抑制拟南芥顶端弯钩形成与HLS1促进热形态建成的机理研究[D]. 南京: 南京师范大学, 2020. |
Jin HH. Mechanism of high temperature inhibition of apical curvature formation in Arabidopsis thaliana and promotion of thermomorphogenesis by HLS1[D]. Nanjing: Nanjing Normal University, 2020. | |
[59] |
You MP, Barbetti MJ. Severity of phytophthora root rot and pre-emergence damping-off in subterranean clover influenced by moisture, temperature, nutrition, soil type, cultivar and their interactions[J]. Plant Pathol, 2017, 66(7): 1162-1181.
doi: 10.1111/ppa.2017.66.issue-7 URL |
[1] | 林鑫焱, 张传忠, 戴兵, 王馨珩, 刘剑锋, 温丽, 徐兴健, 方军. 水稻穗发芽遗传与分子机制的研究进展[J]. 生物技术通报, 2024, 40(1): 24-31. |
[2] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[3] | 张婵, 吴友根, 于靖, 杨东梅, 姚广龙, 杨华庚, 张军锋, 陈萍. 光与茉莉酸信号介导的萜类化合物合成分子机制[J]. 生物技术通报, 2022, 38(8): 32-40. |
[4] | 孙曼銮, 葛赛, 卜佳, 朱壮彦. 大肠杆菌核糖核酸酶调控机制研究[J]. 生物技术通报, 2022, 38(3): 234-245. |
[5] | 张凤, 陈伟. 代谢组学在植物逆境生物学中的研究进展[J]. 生物技术通报, 2021, 37(8): 1-11. |
[6] | 张婵, 姚广龙, 张军锋, 于靖, 杨东梅, 陈萍, 吴友根. 广藿香百秋李醇分子调控及合成生物学研究进展[J]. 生物技术通报, 2021, 37(8): 55-64. |
[7] | 钱虹萍, 陈博, 林金星, 崔亚宁. RNA聚合酶II动态调控及其成像技术的研究进展[J]. 生物技术通报, 2021, 37(4): 293-302. |
[8] | 邹坤, 路丽丽, Collins Asiamah Amponsah, 薛缘, 张少伟, 苏瑛, 赵志辉. 家禽卵泡闭锁机制的研究进展[J]. 生物技术通报, 2020, 36(4): 185-191. |
[9] | 李泽卿, 刘彩贤, 邢文, 文亚峰. miRNA在植物响应高温胁迫中的研究进展[J]. 生物技术通报, 2020, 36(2): 149-157. |
[10] | 郑文清, 张倩, 杜亮. 短串联靶标模拟技术及其在植物miRNA功能研究中的应用[J]. 生物技术通报, 2020, 36(12): 256-264. |
[11] | 位明明, 曾霞, 安泽伟, 胡彦师, 黄肖, 李维国. C类花器官特征基因AGAMOUS(AG)调控植物花分生组织维持与终止研究进展[J]. 生物技术通报, 2020, 36(1): 135-143. |
[12] | 常永芳, 包鹏甲, 褚敏, 吴晓云, 梁春年, 阎萍. LncRNA在哺乳动物毛囊发育调控中的研究进展[J]. 生物技术通报, 2019, 35(8): 205-212. |
[13] | 莫显兰, 史列琴, 陆秋利, 王小敏, 任振新. Sl-miR482在番茄果实中的表达分析及STTM沉默载体的构建[J]. 生物技术通报, 2019, 35(12): 50-56. |
[14] | 黄幸, 丁峰, 彭宏祥, 潘介春, 何新华, 徐炯志, 李琳. 植物WRKY转录因子家族研究进展[J]. 生物技术通报, 2019, 35(12): 129-143. |
[15] | 强晓楠, 李鑫, 陈佳, 廖红东, 于峰. 拟南芥RALF多肽家族的功能多样性初步分析[J]. 生物技术通报, 2019, 35(1): 2-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||