生物技术通报 ›› 2025, Vol. 41 ›› Issue (6): 307-316.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0001
• 研究报告 • 上一篇
赵强(
), 陈思宇, 彭方丽, 汪灿, 高杰, 周棱波, 张国兵, 姜昱雯, 邵明波(
)
收稿日期:2025-01-01
出版日期:2025-06-26
发布日期:2025-06-30
通讯作者:
邵明波,男,硕士,研究员,研究方向 :高粱、薏苡、油菜育种及成果推广转化;E-mail: 563189433@qq.com作者简介:赵强,男,硕士,助理研究员,研究方向 :高粱遗传育种与绿色高效栽培;E-mail: 15761633106@163.com
基金资助:
ZHAO Qiang(
), CHEN Si-yu, PENG Fang-li, WANG Can, GAO Jie, ZHOU Ling-bo, ZHANG Guo-bing, JIANG Yu-wen, SHAO Ming-bo(
)
Received:2025-01-01
Published:2025-06-26
Online:2025-06-30
摘要:
目的 探究不同种植模式和施氮处理对高粱根系细菌群落的影响。 方法 设置两种种植模式(SW:单作高粱,WS:高粱间作大豆),3种不同施氮水平(N0:不施氮,N1:常规施氮,N2:高氮),对不同处理高粱根际土壤进行16S rRNA序列测定,并进行细菌多样性及功能分析。 结果 细菌群落丰度在单作中随施氮量的增加而升高,间作中随施氮量的增加而降低,Shannon 与Simpson指数在6个处理间均无显著差异。种植模式与施氮水平影响了根际细菌群落的组成。高粱根际土壤优势菌门有6个优势类群,分别为变形菌门(Proteobacteria)、酸杆菌门(Acidobacteriota)、放线菌门(Actinobacteria)、芽单胞菌门(Gemmatimonadota)、拟杆菌门(Bacteroidota)、绿弯菌门(Chloroflexi)。FAPROTAX细菌功能分组主要以化能异养、好养型化能异养、捕食性或外寄生性、硝酸盐还原作用等为主。相关性网络分析显示,在正常氮条件下,间作较单作细菌群落相互作用更多、网络更复杂。 结论 间作与不同施氮量影响了高粱根际土壤细菌群落组成。在一定施氮范围,间作可提高高粱根际土壤细菌多样性,增加放线菌门的相对丰度。
赵强, 陈思宇, 彭方丽, 汪灿, 高杰, 周棱波, 张国兵, 姜昱雯, 邵明波. 间作与施氮对高粱根际土壤细菌多样性及功能的影响[J]. 生物技术通报, 2025, 41(6): 307-316.
ZHAO Qiang, CHEN Si-yu, PENG Fang-li, WANG Can, GAO Jie, ZHOU Ling-bo, ZHANG Guo-bing, JIANG Yu-wen, SHAO Ming-bo. Effects of Intercropping and Nitrogen Application on the Diversity and Functions of Soil Bacteria around Sorghum Rhizosphere[J]. Biotechnology Bulletin, 2025, 41(6): 307-316.
种植模式 Planting mode | 施肥处理 Treatment of applying fertilizer | 高粱施肥量 Amount of applied fertilizer in planting sorghum (kg/hm) | ||
|---|---|---|---|---|
| N | P2O5 | K2O | ||
| SW | N0 | 0 | 100 | 300 |
| N1 | 200 | 100 | 300 | |
| N2 | 400 | 100 | 300 | |
| WS | N0 | 0 | 110 | 330 |
| N1 | 220 | 110 | 330 | |
| N2 | 440 | 110 | 330 | |
表1 试验各处理施肥量
Table 1 Amount of applied fertilizer in each experimental treatment
种植模式 Planting mode | 施肥处理 Treatment of applying fertilizer | 高粱施肥量 Amount of applied fertilizer in planting sorghum (kg/hm) | ||
|---|---|---|---|---|
| N | P2O5 | K2O | ||
| SW | N0 | 0 | 100 | 300 |
| N1 | 200 | 100 | 300 | |
| N2 | 400 | 100 | 300 | |
| WS | N0 | 0 | 110 | 330 |
| N1 | 220 | 110 | 330 | |
| N2 | 440 | 110 | 330 | |
处理 Treatment | OTUs | Shannon 指数 Shannon index | 辛普森指数 Simpson index | Chao1 指数 Chao1 index | Ace 指数 Ace index |
|---|---|---|---|---|---|
| SW-N0 | 2 172 | 6.15±0.04 | 0.995 39±0.000 08 | 1 961.47±66.76 | 1 945.77±60.31 |
| SW-N1 | 2 348 | 6.23±0.08 | 0.995 19±0.000 65 | 2 058.32±111.01 | 2 064.59±29.30 |
| SW-N2 | 2 365 | 6.18±0.01 | 0.995 02±0.000 11 | 2 124.00±33.78 | 2 119.75±27.64 |
| WS-N0 | 2 309 | 6.28±0.04 | 0.995 61±0.000 54 | 2 079.17±49.92 | 2 090.03±18.57 |
| WS-N1 | 2 318 | 6.31±0.05 | 0.995 98±0.000 37 | 2 110.02±28.00 | 2 044.01±92.08 |
| WS-N2 | 2 282 | 6.13±0.21 | 0.994 79±0.001 36 | 1 924.67±127.36 | 1 929.61±126.98 |
表2 不同处理高粱根际土壤细菌群落丰度与多样性指数
Table 2 Indices of bacterial community abundance and diversity in rhizosphere soil of sorghum under different treatments
处理 Treatment | OTUs | Shannon 指数 Shannon index | 辛普森指数 Simpson index | Chao1 指数 Chao1 index | Ace 指数 Ace index |
|---|---|---|---|---|---|
| SW-N0 | 2 172 | 6.15±0.04 | 0.995 39±0.000 08 | 1 961.47±66.76 | 1 945.77±60.31 |
| SW-N1 | 2 348 | 6.23±0.08 | 0.995 19±0.000 65 | 2 058.32±111.01 | 2 064.59±29.30 |
| SW-N2 | 2 365 | 6.18±0.01 | 0.995 02±0.000 11 | 2 124.00±33.78 | 2 119.75±27.64 |
| WS-N0 | 2 309 | 6.28±0.04 | 0.995 61±0.000 54 | 2 079.17±49.92 | 2 090.03±18.57 |
| WS-N1 | 2 318 | 6.31±0.05 | 0.995 98±0.000 37 | 2 110.02±28.00 | 2 044.01±92.08 |
| WS-N2 | 2 282 | 6.13±0.21 | 0.994 79±0.001 36 | 1 924.67±127.36 | 1 929.61±126.98 |
图2 高粱根际细菌群落结构A:属水平各处理细菌群落结构图;B:门水平各处理细菌群落结构图;C:不同处理中OTU 数目花瓣;D :门水平组间差异显著水平,不同小写字母表示差异显著,P<0.05
Fig. 2 Bacterial community structure around sorghum rhizosphereA: Map of bacterial community structure at the genus level. B: Map of bacterial community structure at the phylum level. C: Flower plot analysis for OTU in different treatments. D: Significant differences among groups at the phylum level, with different lowercase letters indicating significant differences, P<0.05
处理 Treatment | 节点数 Number of nodes | 边数 Number of edges | 正相关边数 Number of positive edges | 负相关边数 Number of negative edges | 聚类系数 Clustering coefficient | 模块性 Modularity |
|---|---|---|---|---|---|---|
| SW-N0 | 161 | 668 | 444 | 224 | 0.509 1 | 0.533 9 |
| SW-N1 | 165 | 747 | 491 | 256 | 0.539 4 | 0.551 9 |
| SW-N2 | 171 | 763 | 498 | 265 | 0.563 8 | 0.570 9 |
| WS-N0 | 168 | 756 | 499 | 257 | 0.582 4 | 0.552 3 |
| WS-N1 | 172 | 768 | 511 | 257 | 0.598 6 | 0.569 4 |
| WS-N2 | 164 | 725 | 478 | 247 | 0.518 9 | 0.546 9 |
表3 不同处理高粱根际细菌相关性网络属性
Table 3 Network attributes of bacteria correlation around sorghum rhizosphere under different treatments
处理 Treatment | 节点数 Number of nodes | 边数 Number of edges | 正相关边数 Number of positive edges | 负相关边数 Number of negative edges | 聚类系数 Clustering coefficient | 模块性 Modularity |
|---|---|---|---|---|---|---|
| SW-N0 | 161 | 668 | 444 | 224 | 0.509 1 | 0.533 9 |
| SW-N1 | 165 | 747 | 491 | 256 | 0.539 4 | 0.551 9 |
| SW-N2 | 171 | 763 | 498 | 265 | 0.563 8 | 0.570 9 |
| WS-N0 | 168 | 756 | 499 | 257 | 0.582 4 | 0.552 3 |
| WS-N1 | 172 | 768 | 511 | 257 | 0.598 6 | 0.569 4 |
| WS-N2 | 164 | 725 | 478 | 247 | 0.518 9 | 0.546 9 |
| 1 | 邹剑秋. 高粱育种与栽培技术研究新进展 [J]. 中国农业科学, 2020, 53(14): 2769-2773. |
| Zou JQ. New research progress on sorghum breeding and cultivation techniques [J]. Sci Agric Sin, 2020, 53(14): 2769-2773. | |
| 2 | 潘明凤. 乡村振兴背景下贵州高粱产业可持续发展路径研究 [D]. 贵阳: 贵州财经大学, 2022. |
| Pan MF. Study on the sustainable development path of sorghum industry in Guizhou under the background of rural revitalization [D]. Guiyang: Guizhou University of Finance and Economics, 2022. | |
| 3 | 邵明波, 周棱波, 彭方丽, 等. 科技支撑贵州酒用高粱产业发展对策 [J]. 贵州农业科学, 2021, 49(4): 156-164. |
| Shao MB, Zhou LB, Peng FL, et al. Development countermeasures of liquor-making sorghum industry supported by science and technology in Guizhou [J]. Guizhou Agric Sci, 2021, 49(4): 156-164. | |
| 4 | 朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康 [J]. 中国科学: 生命科学, 2021, 51(1): 1-11. |
| Zhu YG, Peng JJ, Wei Z, et al. Linking the soil microbiome to soil health [J]. Sci Sin Vitae, 2021, 51(1): 1-11. | |
| 5 | Zhang N, Nunan N, Hirsch PR, et al. Theory of microbial coexistence in promoting soil-plant ecosystem health [J]. Biol Fertil Soils, 2021, 57(7): 897-911. |
| 6 | Zhu MY, liu ZD, Song YY, et al. Soil microbial functional diversity is primarily affected by soil nitrogen, salinity and alkalinity in wetland ecosystem [J]. Applied Soil Ecology, 2024, 199: 105407. |
| 7 | Maxwell TL, Canarini A, Bogdanovic I, et al. Contrasting drivers of belowground nitrogen cycling in a montane grassland exposed to a multifactorial global change experiment with elevated CO2, warming, and drought [J]. Glob Chang Biol, 2022, 28(7): 2425-2441. |
| 8 | Ai HS, Fan B, Zhou ZQ, et al. The impact of nitrogen fertilizer application on air Pollution: Evidence from China [J]. J Environ Manag, 2024, 370: 122880. |
| 9 | Mahankale NR. RETRACTED ARTICLE: Global influence of synthetic fertilizers on climate change [J]. Appl Geomat, 2024, 16(1): 317. |
| 10 | 刘明凤, 周桂香, 张佳宝, 等. 长期秸秆掩埋配施氮肥对土壤细菌群落特征的影响 [J]. 土壤学报, 2024, 61(5): 1374-1385. |
| Liu MF, Zhou GX, Zhang JB, et al. Effects of long-term straw burying and nitrogen fertilizer application on soil bacterial community characteristics [J]. Acta Pedol Sin, 2024, 61(5): 1374-1385. | |
| 11 | Dong HY, Fan SX, Sun HY, et al. Rhizosphere-associated microbiomes of rice (Oryza sativa L.) under the effect of increased nitrogen fertilization [J]. Frontiers in Microbiology, 2021, 12: 730506. |
| 12 | Gu BJ, Zhang XM, Lam SK, et al. Cost-effective mitigation of nitrogen pollution from global croplands [J]. Nature, 2023, 613(7942): 77-84. |
| 13 | 蔡祖聪. 浅谈“十四五”土壤肥力与土壤养分循环分支学科发展战略 [J]. 土壤学报, 2020, 57(5): 1128-1136. |
| Cai ZC. Discussion on the strategies for development of the subdiscipline of soil fertility and soil nutrient cycling for the 14th Five-Year Plan [J]. Acta Pedol Sin, 2020, 57(5): 1128-1136. | |
| 14 | Tilman D. Benefits of intensive agricultural intercropping [J]. Nat Plants, 2020, 6(6): 604-605. |
| 15 | Berdjour A, Dugje IY, Dzomeku IK, et al. Maize-soybean intercropping effect on yield productivity, weed control and diversity in northern Ghana [J]. Weed Biol Manag, 2020, 20(2): 69-81. |
| 16 | Jiang P, Wang YZ, Zhang YP, et al. Intercropping enhances maize growth and nutrient uptake by driving the link between rhizosphere metabolites and microbiomes [J]. New Phytol, 2024, 243(4): 1506-1521. |
| 17 | Liu Y, Yang HC, Liu Q, et al. Effect of two different sugarcane cultivars on rhizosphere bacterial communities of sugarcane and soybean upon intercropping [J]. Front Microbiol, 2021, 11: 596472. |
| 18 | Wang C, Zhou LB, Zhang GB, et al. Responses of photosynthetic characteristics and dry matter formation in waxy sorghum to row ratio configurations in waxy sorghum-soybean intercropping systems [J]. Field Crops Res, 2021, 263: 108077. |
| 19 | 赵强, 章洁琼, 汪灿, 等. 不同间作模式下糯高粱根际土壤特性及产量变化 [J]. 南方农业学报, 2022, 53(8): 2122-2132. |
| Zhao Q, Zhang JQ, Wang C, et al. Rhizosphere soil characteristics and yield changes of waxy Sorghum under different intercropping patterns [J]. J South Agric, 2022, 53(8): 2122-2132. | |
| 20 | 鲍莹, 严梦圆, 吴萌, 等. 腐殖酸配施壳聚糖调控设施番茄土壤细菌群落 [J]. 农业环境科学学报, 2022, 41(12): 2772-2778. |
| Bao Y, Yan MY, Wu M, et al. Humic acid combined with chitosan regulates bacterial communities in tomato facility soil [J]. J Agro Environ Sci, 2022, 41(12): 2772-2778. | |
| 21 | Tian XL, Wang CB, Bao XG, et al. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping [J]. Plant Soil, 2019, 436(1): 173-192. |
| 22 | 尹国丽, 李亚娟, 张振粉, 等. 不同草田轮作模式土壤养分及细菌群落组成特征 [J]. 生态学报, 2020, 40(5): 1542-1550. |
| Yin GL, Li YJ, Zhang ZF, et al. Characteristics of soil nutrients and bacterial community composition under different rotation patterns in grassland [J]. Acta Ecol Sin, 2020, 40(5): 1542-1550. | |
| 23 | 刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展 [J]. 微生物学报, 2021, 61(2): 231-248. |
| Liu JW, Li XZ, Yao MJ. Research progress on assembly of plant rhizosphere microbial community [J]. Acta Microbiol Sin, 2021, 61(2): 231-248. | |
| 24 | Zuo JJ, Zu MT, Liu L, et al. Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb Dendrobium [J]. BMC Plant Biol, 2021, 21(1): 127. |
| 25 | Sohn SI, Ahn JH, Pandian S, et al. Dynamics of bacterial community structure in the rhizosphere and root nodule of soybean: impacts of growth stages and varieties [J]. Int J Mol Sci, 2021, 22(11): 5577. |
| 26 | 姜琴芳, 伏云珍, 李倩, 等. 间作作物种间相互作用对土壤细菌群落的影响 [J]. 西北农业学报, 2024, 33(3): 542-551. |
| Jiang QF, Fu YZ, Li Q, et al. Effects of intercropping crop interactions on soil bacterial community structure and function [J]. Acta Agric Boreali Occidentalis Sin, 2024, 33(3): 542-551. | |
| 27 | Ali S, Khan N. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants [J]. Microbiol Res, 2021, 249: 126771. |
| 28 | Yu P, He XM, Baer M, et al. Plant flavones enrich rhizosphere oxalobacteraceae to improve maize performance under nitrogen deprivation [J]. Nat Plants, 2021, 7(4): 481-499. |
| 29 | 顾嘉诚, 王文敏, 王振, 等. 玉米/大豆间作对根际土壤磷素生物有效性和微生物群落结构的影响 [J]. 应用生态学报, 2023, 34(11): 3030-3038. |
| Gu JC, Wang WM, Wang Z, et al. Effects of maize and soybean intercropping on soil phosphorus bioavailability and microbial community structure in rhizosphere [J]. Chin J Appl Ecol, 2023, 34(11): 3030-3038. | |
| 30 | 黄媛, 朱艳霞, 韦范, 等. 不同施肥量对仙草产量和土壤微生物多样性的影响 [J]. 中国农学通报, 2024, 40(20): 65-72. |
| Huang Y, Zhu YX, Wei F, et al. Effects of different fertilization rates on yield of Mesona chinensis Benth and soil bacterial diversity [J]. Chin Agric Sci Bull, 2024, 40(20): 65-72. | |
| 31 | 邹湘, 易博, 张奇春, 等. 长期施肥对稻田土壤微生物群落结构及氮循环功能微生物数量的影响 [J]. 植物营养与肥料学报, 2020, 26(12): 2158-2167. |
| Zou X, Yi B, Zhang QC, et al. Effects of long-term fertilization on the microbial community structure and the population of N cycle-related functional microorganism in paddy soil [J]. J Plant Nutr Fertil, 2020, 26(12): 2158-2167. | |
| 32 | 高玉坤, 张建东, 杨溥原, 等. 高粱根际土壤细菌群落对盐胁迫的响应 [J]. 生物技术通报, 2024, 40(4): 203-216. |
| Gao YK, Zhang JD, Yang PY, et al. Responses of sorghum rhizosphere soil bacterial communities to salt stress [J]. Biotechnol Bull, 2024, 40(4): 203-216. | |
| 33 | Zheng YF, Liang J, Zhao DL, et al. The root nodule microbiome of cultivated and wild halophytic legumes showed similar diversity but distinct community structure in Yellow River Delta saline soils [J]. Microorganisms, 2020, 8(2): 207. |
| 34 | 王晓彤, 靳振江, 周军波, 等. 龙脊稻作梯田土壤细菌群落结构和功能类群及影响因子分析 [J]. 农业资源与环境学报, 2021, 38(3): 365-376. |
| Wang XT, Jin ZJ, Zhou JB, et al. Community structure and functional groups of soil bacteria and their influencing factors in Longji rice terraces [J]. J Agric Resour Environ, 2021, 38(3): 365-376. | |
| 35 | 尹丹, 朱忆雯, 胡敏, 等. 水稻根际微生物及其驱动的土壤碳氮磷循环 [J]. 植物营养与肥料学报, 2024, 30(11): 2207-2220. |
| Yin D, Zhu YW, Hu M, et al. Rice rhizosphere microbiomes and their driving cycling of soil carbon, nitrogen, and phosphorus [J]. Plant Nutr Fert Sci, 2024, 30(11): 2207-2220. | |
| 36 | 冷飘, 金拂晓, 黄毅, 等. 大豆埃氏慢生根瘤菌Y63-1菌株培养基的筛选与优化 [J]. 大豆科学, 2024, 43(5): 641-647. |
| Leng P, Jin FX, Huang Y, et al. Screening and optimization of culture medium for Bradyrhizobium elkanii Y63-1 [J]. Soybean Sci, 2024, 43(5): 641-647. | |
| 37 | 练金山, 王慧颖, 徐明岗, 等. 长期施用有机肥潮土细菌的多样性及功能预测 [J]. 植物营养与肥料学报, 2021, 27(12): 2073-2082. |
| Lian JS, Wang HY, Xu MG, et al. Diversity and function prediction of bacteria community in fluvo-aquic soils as affected by long-term organic fertilization [J]. J Plant Nutr Fertil, 2021, 27(12): 2073-2082. | |
| 38 | 耿顺军, 许木果, 刘忠妹, 等. 化肥减量配施有机肥对橡胶园土壤细菌群落及其功能的影响 [J]. 热带农业科技, 2024, 47(4): 54-60. |
| Geng SJ, Xu MG, Liu ZM, et al. Effects of reducing chemical fertilizer combined with organic fertilizer on community structure and functional groups of soil bacteria in rubber plantation [J]. Trop Agric Sci Technol, 2024, 47(4): 54-60. | |
| 39 | 何升然, 刘晓静, 赵雅姣, 等. 紫花苜蓿/甜高粱间作对根际土壤特性及微生物群落特征的影响 [J]. 草业学报, 2024, 33(5): 92-105. |
| He SR, Liu XJ, Zhao YJ, et al. Effects of alfalfa/sweet sorghum intercropping on rhizosphere soil characteristics and microbial community characteristics [J]. Acta Prataculturae Sin, 2024, 33(5): 92-105. |
| [1] | 刘卓君, 柴文婷, 任毅乐, 王新宇, 朱立勋, 赵珊珊, 杨博慧, 范佳利, 李新凤, 赵威军, 吕晋慧, 张春来. 高粱TGA基因响应孢堆黑粉菌(Sporisorium reilianum)侵染表达和DNA变异分析[J]. 生物技术通报, 2025, 41(5): 90-103. |
| [2] | 夏馨媛, 薛道晟, 李鑫静, 龙俊杰, 陆开形, 丁沃娜, 李梦莎. 稻油轮作土壤多功能促生菌的鉴定及其对油菜生长和根际细菌群落的影响[J]. 生物技术通报, 2025, 41(4): 289-301. |
| [3] | 宋奋奋, 段艳雪, 桑愉, 王继朋, 彭锐, 孙年喜, 李勇. 患病和健康羊肚菌菌丝际土壤微生物群落特征[J]. 生物技术通报, 2025, 41(4): 323-334. |
| [4] | 杜品廷, 吴国江, 王振国, 李岩, 周伟, 周亚星. 高粱CPP基因家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 132-142. |
| [5] | 温绍福, 江润海, 朱城强, 张梅, 余小琴, 杨杰惠, 杨小容, 侯秀丽. 铅污染土壤中解磷菌对玉米根际土壤性质和微生物群落结构的影响[J]. 生物技术通报, 2024, 40(9): 225-237. |
| [6] | 刘传和, 贺涵, 邵雪花, 何秀古. 不同覆盖处理对菠萝园土壤代谢物和细菌群落结构的影响[J]. 生物技术通报, 2024, 40(7): 247-258. |
| [7] | 孔德婷, 齐笑含, 刘兴蕾, 李丽萍, 胡凤益, 黄立钰, 秦世雯. 不同多年生稻品种内生细菌群落多样性比较分析[J]. 生物技术通报, 2024, 40(5): 225-236. |
| [8] | 於莉军, 王桥美, 彭文书, 严亮, 杨瑞娟. 景迈山古茶园与现代有机茶园根际土壤微生物群落研究[J]. 生物技术通报, 2024, 40(5): 237-247. |
| [9] | 高玉坤, 张建东, 杨溥原, 陈东明, 王志博, 田颐瑾, Zakey Eldinn.E.A.Khlid, 崔江慧, 常金华. 高粱根际土壤细菌群落对盐胁迫的响应[J]. 生物技术通报, 2024, 40(4): 203-216. |
| [10] | 雷美玲, 饶文华, 胡进锋, 岳琪, 吴祖建, 范国成. 黄龙病发病芦柑根际土壤细菌群落组成与多样性特征[J]. 生物技术通报, 2024, 40(2): 266-276. |
| [11] | 冯路遥, 赵江源, 施竹凤, 莫艳芳, 杨童雨, 申云鑫, 何飞飞, 李铭刚, 杨佩文. 森林根际土壤细菌的分离、鉴定及生物活性筛选[J]. 生物技术通报, 2024, 40(1): 294-307. |
| [12] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
| [13] | 范昕琦, 王海燕, 陈静, 张晓娟, 郭琦, 梁笃, 周福平, 聂萌恩, 张一中, 柳青山. EMS诱变对高粱成苗及M1主要农艺性状的影响[J]. 生物技术通报, 2023, 39(7): 173-184. |
| [14] | 徐建霞, 丁延庆, 冯周, 曹宁, 程斌, 高旭, 邹桂花, 张立异. 基于Super-GBS的高粱株高和节间数QTL定位[J]. 生物技术通报, 2023, 39(7): 185-194. |
| [15] | 谢田朋, 张佳宁, 董永骏, 张建, 景明. 早期抽薹对当归根际土壤微环境的影响[J]. 生物技术通报, 2023, 39(7): 206-218. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||