生物技术通报 ›› 2025, Vol. 41 ›› Issue (7): 28-36.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1153
收稿日期:2024-11-28
出版日期:2025-07-26
发布日期:2025-07-22
通讯作者:
戴良英,男,博士,教授,研究方向 :植物与微生物互作;E-mail: daily@hunau.net作者简介:张学琼,女,硕士研究生,研究方向 :植物与微生物互作;E-mail: zhangxueqiong11@139.com
基金资助:
ZHANG Xue-qiong1(
), PAN Su-jun2, LI Wei1, DAI Liang-ying1(
)
Received:2024-11-28
Published:2025-07-26
Online:2025-07-22
摘要:
磷(phosphorus, P)是植物生长、发育和诸多生理功能中的必需元素。磷酸盐转运蛋白负责磷从土壤到植物细胞器的摄取和运输,在植物的生长发育及非生物胁迫和生物胁迫中发挥重要作用。本文综述了植物磷酸盐转运蛋白的分类、结构特点、亚细胞定位及其在植物应对非生物胁迫和生物胁迫响应中的重要作用。植物磷酸盐转运蛋白可分三大类,其中第一类又可分为5个亚家族。这些蛋白在植物体内的不同部位发挥功能。植物磷酸盐转运蛋白不仅参与磷酸盐的吸收和转运,还在胁迫响应中起重要作用。在非生物胁迫下,植物磷酸盐转运蛋白被诱导表达,通过提高植物的抗氧化能力增强植物对非生物胁迫的耐受性。此外,植物磷酸盐转运蛋白与其他蛋白互作,从而调控植物响应非生物胁迫。在生物胁迫下,植物磷酸盐转运蛋白通过调节植物体内防御相关基因的转录水平,从而正向或负向调控植物对病原物的抗性。已有研究表明植物磷酸盐转运蛋白在胁迫响应中的重要作用,但其具体的分子机制和调控网络仍需进一步探索。未来的研究方向将聚焦于鉴定植物磷酸盐转运蛋白的上游调控因子及下游互作靶基因,深入阐明植物磷酸盐转运蛋白调控生物胁迫与非生物胁迫的分子机制,以期为作物的磷高效利用和高产高抗分子育种提供参考。
张学琼, 潘素君, 李魏, 戴良英. 植物磷酸盐转运蛋白在胁迫响应中的研究进展[J]. 生物技术通报, 2025, 41(7): 28-36.
ZHANG Xue-qiong, PAN Su-jun, LI Wei, DAI Liang-ying. Research Progress of Plant Phosphate Transporters in the Response to Stress[J]. Biotechnology Bulletin, 2025, 41(7): 28-36.
| [1] | Wang F, Deng MJ, Xu JM, et al. Molecular mechanisms of phosphate transport and signaling in higher plants [J]. Semin Cell Dev Biol, 2018, 74: 114-122. |
| [2] | Smith FW, Mudge SR, Rae AL, et al. Phosphate transport in plants [J]. Plant Soil, 2003, 248(1): 71-83. |
| [3] | 冶赓康, 俄胜哲, 陈政宇, 等. 土壤中磷的存在形态及分级方法研究进展 [J]. 中国农学通报, 2023, 39(1): 96-102. |
| Ye GK, E SZ, Chen ZY, et al. The forms and classification methods of phosphorus in soil: research progress [J]. Chin Agric Sci Bull, 2023, 39(1): 96-102. | |
| [4] | Nussaume L, Kanno S. Reviewing impacts of biotic and abiotic stresses on the regulation of phosphate homeostasis in plants [J]. J Plant Res, 2024, 137(3): 297-306. |
| [5] | Wang Y, Wang F, Lu H, et al. Phosphate uptake and transport in plants: an elaborate regulatory system [J]. Plant Cell Physiol, 2021, 62(4): 564-572. |
| [6] | Prathap V, Kumar A, Maheshwari C, et al. Phosphorus homeostasis: acquisition, sensing, and long-distance signaling in plants [J]. Mol Biol Rep, 2022, 49(8): 8071-8086. |
| [7] | Raghothama KG. Phosphate acquisition [J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 665-693. |
| [8] | Młodzińska E, Zboińska M. Phosphate uptake and allocation-A closer look at Arabidopsis thaliana L. and Oryza sativa L [J]. Front Plant Sci, 2016, 7: 1198. |
| [9] | Zhang Y, Hu LZ, Yu DS, et al. Integrative analysis of the wheat PHT1 gene family reveals A novel member involved in arbuscular mycorrhizal phosphate transport and immunity [J]. Cells, 2019, 8(5): 490. |
| [10] | Wang D, Lv SL, Jiang P, et al. Roles, regulation, and agricultural application of plant phosphate transporters [J]. Front Plant Sci, 2017, 8: 817. |
| [11] | Wang ZR, Kuo HF, Chiou TJ. Intracellular phosphate sensing and regulation of phosphate transport systems in plants [J]. Plant Physiol, 2021, 187(4): 2043-2055. |
| [12] | Daram P, Brunner S, Rausch C, et al. Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis [J]. Plant Cell, 1999, 11(11): 2153-2166. |
| [13] | Takabatake R, Hata S, Taniguchi M, et al. Isolation and characterization of cDNAs encoding mitochondrial phosphate transporters in soybean, maize, rice, and Arabidopis [J]. Plant Mol Biol, 1999, 40(3): 479-486. |
| [14] | Wang GY, Shi JL, Ng G, et al. Circadian clock-regulated phosphate transporter PHT4;1 plays an important role in Arabidopsis defense [J]. Mol Plant, 2011, 4(3): 516-526. |
| [15] | Liu JL, Fu SM, Yang L, et al. Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants [J]. Plant Signal Behav, 2016, 11(8): e1213474. |
| [16] | Wege S, Khan GA, Jung JY, et al. The EXS domain of PHO1 participates in the response of shoots to phosphate deficiency via a root-to-shoot signal [J]. Plant Physiol, 2016, 170(1): 385-400. |
| [17] | Yamaji N, Takemoto Y, Miyaji T, et al. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node [J]. Nature, 2017, 541(7635): 92-95. |
| [18] | Ding GD, Lei GJ, Yamaji N, et al. Vascular cambium-localized AtSPDT mediates xylem-to-phloem transfer of phosphorus for its preferential distribution in Arabidopsis [J]. Mol Plant, 2020, 13(1): 99-111. |
| [19] | Yang XY, Lu MQ, Wang YF, et al. Response mechanism of plants to drought stress [J]. Horticulturae, 2021, 7(3): 50. |
| [20] | Wei XS, Fu Y, Yu RJ, et al. Comprehensive sequence and expression profile analysis of the phosphate transporter gene family in soybean [J]. Sci Rep, 2022, 12(1): 20883. |
| [21] | Sun TT, Li MJ, Shao Y, et al. Comprehensive genomic identification and expression analysis of the phosphate transporter (PHT) gene family in apple [J]. Front Plant Sci, 2017, 8: 426. |
| [22] | Sun TT, Zhou BB, Pei TT, et al. Phosphate transporter MdPHT1;7 enhances phosphorus accumulation and improves low phosphorus and drought tolerance [J]. J Plant Biol, 2021, 64(5): 403-416. |
| [23] | Zhang CX, Meng S, Li MJ, et al. Genomic identification and expression analysis of the phosphate transporter gene family in poplar [J]. Front Plant Sci, 2016, 7: 1398. |
| [24] | Cao MX, Liu HZ, Zhang C, et al. Functional analysis of StPHT1;7, a Solanum tuberosum L. phosphate transporter gene, in growth and drought tolerance [J]. Plants, 2020, 9(10): 1384. |
| [25] | Li Y, Wang X, Zhang H, et al. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus [J]. PLoS One, 2019, 14(7): e0220374. |
| [26] | Yang XL, Hu Q, Zhao YF, et al. Identification of GmPT proteins and investigation of their expressions in response to abiotic stress in soybean [J]. Planta, 2024, 259(4): 76. |
| [27] | Faraji S, Hasanzadeh S, Heidari P. Comparative in silico analysis of phosphate transporter gene family, PHT in Camelina sativa gemome [J]. Gene Rep, 2021, 25: 101351. |
| [28] | Lv SL, Wang D, Jiang P, et al. Variation of PHT families adapts salt cress to phosphate limitation under salinity [J]. Plant Cell Environ, 2021, 44(5): 1549-1564. |
| [29] | Murugan N, Palanisamy V, Channappa M, et al. Genome-wide in silico identification, structural analysis, promoter analysis, and expression profiling of PHT gene family in sugarcane root under salinity stress [J]. Sustainability, 2022, 14(23): 15893. |
| [30] | Zhu W, Miao Q, Sun D, et al. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana [J]. PLoS One, 2012, 7(8): e43530. |
| [31] | Cubero B, Nakagawa Y, Jiang XY, et al. The phosphate transporter PHT4;6 is a determinant of salt tolerance that is localized to the Golgi apparatus of Arabidopsis [J]. Mol Plant, 2009, 2(3): 535-552. |
| [32] | 李万, 李成, 程敏, 等. 磷转运蛋白StPHO1.2提高马铃薯耐热性 [J]. 作物学报, 2024, 50(2): 394-402. |
| Li W, Li C, Cheng M, et al. Phosphorus transporter StPHO1.2 improving heat tolerance in potato [J]. Acta Agron Sin, 2024, 50(2): 394-402. | |
| [33] | 李万, 李成, 程敏, 等. 磷转运蛋白StPHO1.3对马铃薯耐热性的影响及其互作蛋白的筛选 [J]. 农业生物技术学报, 2024, 32(2): 273-282. |
| Li W, Li C, Cheng M, et al. Effects of phosphorus transporter StPHO1.3 on heat resistance of potato (Solanum tuberosum) and screening of its interacting proteins [J]. J Agric Biotechnol, 2024, 32(2): 273-282. | |
| [34] | Pacak A, Barciszewska-Pacak M, Swida-Barteczka A, et al. Heat stress affects pi-related genes expression and inorganic phosphate deposition/accumulation in barley [J]. Front Plant Sci, 2016, 7: 926. |
| [35] | Song ZP, Fan NB, Jiao GZ, et al. Overexpression of OsPT8 increases auxin content and enhances tolerance to high-temperature stress in Nicotiana tabacum [J]. Genes, 2019, 10(10): 809. |
| [36] | Wei XS, Xu XT, Fu Y, et al. Effects of soybean phosphate transporter gene GmPHT2 on pi transport and plant growth under limited pi supply condition [J]. Int J Mol Sci, 2023, 24(13): 11115. |
| [37] | Zhao LN, Liu FX, Xu WY, et al. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana [J]. Plant Biotechnol J, 2009, 7(6): 550-561. |
| [38] | Wang CC, Wei Q, Zhang K, et al. Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings [J]. PLoS One, 2013, 8(12): e81849. |
| [39] | Castrillo G, Sánchez-Bermejo E, de Lorenzo L, et al. WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis [J]. Plant Cell, 2013, 25(8): 2944-2957. |
| [40] | Wang H, Xu Q, Kong YH, et al. Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation [J]. Plant Physiol, 2014, 164(4): 2020-2029. |
| [41] | Luan MD, Liu JL, Liu YW, et al. Vacuolar phosphate transporter 1 (VPT1) affects arsenate tolerance by regulating phosphate homeostasis in Arabidopsis [J]. Plant Cell Physiol, 2018, 59(7): 1345-1352. |
| [42] | Cao Y, Sun D, Ai H, et al. Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains [J]. Environ Sci Technol, 2017, 51(21): 12131-12138. |
| [43] | Wang PT, Zhang WW, Mao CZ, et al. The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice [J]. J Exp Bot, 2016, 67(21): 6051-6059. |
| [44] | Souri Z, Karimi N, de Oliveira LM. Antioxidant enzymes responses in shoots of arsenic hyperaccumulator, Isatis cappadocica Desv., under interaction of arsenate and phosphate [J]. Environ Technol, 2018, 39(10): 1316-1327. |
| [45] | 王云, 赵鹏, 李广鑫, 等. P对小麦Cd和As吸收与转运的影响 [J]. 环境科学, 2023, 44(5): 2889-2898. |
| Wang Y, Zhao P, Li GX, et al. Effects of P on the uptake and transport of Cd and As in wheat seedlings [J]. Environ Sci, 2023, 44(5): 2889-2898. | |
| [46] | Wang PF, Chen ZD, Meng YJ, et al. Wheat PHT1;9 acts as one candidate arsenate absorption transporter for phytoremediation [J]. J Hazard Mater, 2023, 452: 131219. |
| [47] | Tao LY, Wang L, Liu LH, et al. Phosphorous accumulation associated with mitochondrial PHT3-mediated enhanced arsenate tolerance in Chlamydomonas reinhardtii [J]. J Hazard Mater, 2024, 478: 135460. |
| [48] | Wan YY, Wang Z, Xia JC, et al. Genome-wide analysis of phosphorus transporter genes in Brassica and their roles in heavy metal stress tolerance [J]. Int J Mol Sci, 2020, 21(6): 2209. |
| [49] | 戴闽玥. 外源磷对红树植物抗镉胁迫的调控机制 [D]. 厦门: 厦门大学, 2018. |
| Dai MY. Regulation mechanism of exogenous phosphorus on cadmium stress resistance of mangrove plants [D]. Xiamen: Xiamen University, 2018. | |
| [50] | 姜南, 石杨, 赵志慧, 等. 镉胁迫下水稻OsPT1的表达及功能分析 [J]. 生物技术通报, 2023, 39(1): 166-174. |
| Jiang N, Shi Y, Zhao ZH, et al. Expression and functional analysis of OsPT1 gene in rice under cadmium stress [J]. Biotechnol Bull, 2023, 39(1): 166-174. | |
| [51] | Bechtaoui N, Rabiu MK, Raklami A, et al. Phosphate-dependent regulation of growth and stresses management in plants [J]. Front Plant Sci, 2021, 12: 679916. |
| [52] | Dong Z, Li W, Liu J, et al. The rice phosphate transporter protein OsPT8 regulates disease resistance and plant growth [J]. Sci Rep, 2019, 9(1): 5408. |
| [53] | Hassler S, Lemke L, Jung B, et al. Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects, constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis [J]. Plant J, 2012, 72(5): 732-744. |
| [54] | Chan C, Liao YY, Chiou TJ. The impact of phosphorus on plant immunity [J]. Plant Cell Physiol, 2021, 62(4): 582-589. |
| [55] | Malla KB, Thapa G, Doohan FM. Mitochondrial phosphate transporter and methyltransferase genes contribute to Fusarium head blight Type II disease resistance and grain development in wheat [J]. PLoS One, 2021, 16(10): e0258726. |
| [1] | 黄旭升, 周雅莉, 柴旭东, 闻婧, 王计平, 贾小云, 李润植. 紫苏质体型PfLPAT1B基因的克隆及其在油脂合成中的功能分析[J]. 生物技术通报, 2025, 41(7): 226-236. |
| [2] | 李思博, 钱虹萍, 徐昌文, 王笑, 林金星, 崔亚宁. 植物内源激发子调控的胞内转运参与植物生长发育和逆境胁迫响应的研究进展[J]. 生物技术通报, 2025, 41(7): 17-27. |
| [3] | 侯鹰翔, 费思恬, 黎妮, 李兰, 宋松泉, 王伟平, 张超. 水稻miRNAs响应生物胁迫研究进展[J]. 生物技术通报, 2025, 41(7): 69-80. |
| [4] | 李凯月, 邓晓霞, 殷缘, 杜亚彤, 徐元静, 王竞红, 于耸, 蔺吉祥. 蓖麻LEA基因家族的鉴定和铝胁迫响应分析[J]. 生物技术通报, 2025, 41(7): 128-138. |
| [5] | 王从欢, 伍国强, 魏明. 植物CBL调控逆境胁迫响应的作用机制[J]. 生物技术通报, 2025, 41(7): 1-16. |
| [6] | 韩燚, 侯昌林, 唐露, 孙璐, 谢晓东, 梁晨, 陈小强. 大麦HvERECTA基因的克隆及功能分析[J]. 生物技术通报, 2025, 41(7): 106-116. |
| [7] | 郭秀娟, 冯宇, 吴瑞香, 王利琴, 杨建春. Ca2+处理对胡麻种子萌发影响的转录组分析[J]. 生物技术通报, 2025, 41(7): 139-149. |
| [8] | 李霞, 张泽伟, 刘泽军, 王楠, 郭江波, 辛翠花, 张彤, 简磊. 马铃薯转录因子StMYB96的克隆及功能研究[J]. 生物技术通报, 2025, 41(7): 181-192. |
| [9] | 龚钰涵, 陈兰, 尚方慧子, 郝灵颖, 刘硕谦. 茶树TRB基因家族鉴定及表达模式分析[J]. 生物技术通报, 2025, 41(7): 214-225. |
| [10] | 魏雨佳, 李岩, 康语涵, 弓晓楠, 杜敏, 涂岚, 石鹏, 于子涵, 孙彦, 张昆. 白颖苔草CrMYB4基因的克隆和表达分析[J]. 生物技术通报, 2025, 41(7): 248-260. |
| [11] | 林佳怡, 陈强, 张磊, 刘宏鑫, 郑晓明, 逄洪波. 褪黑素在植物低温胁迫中的研究进展[J]. 生物技术通报, 2025, 41(7): 37-48. |
| [12] | 高婧, 陈益存, 高暝, 赵耘霄, 汪阳东. 植物单宁合成调控及其对环境的响应机制[J]. 生物技术通报, 2025, 41(7): 49-59. |
| [13] | 吴浩, 董伟峰, 贺子天, 李艳肖, 谢辉, 孙明哲, 沈阳, 孙晓丽. 水稻BXL基因家族的全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(6): 87-98. |
| [14] | 张钧杰, 刘爽, 胡明珠, 石雪瑞, 代金霞. 荒漠植物根际土壤固氮微生物的筛选及其抗逆促生特性[J]. 生物技术通报, 2025, 41(6): 317-326. |
| [15] | 黄丹, 彭兵阳, 张盼盼, 焦悦, 吕佳斌. 油茶HD-Zip基因家族鉴定及其在非生物胁迫下的表达分析[J]. 生物技术通报, 2025, 41(6): 191-207. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||