生物技术通报 ›› 2025, Vol. 41 ›› Issue (8): 102-114.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0187
• 研究报告 •
收稿日期:2025-02-23
出版日期:2025-08-26
发布日期:2025-08-14
通讯作者:
邓欣,女,博士,讲师,研究方向 :植物基因组与抗逆;E-mail: dengxin@lnu.edu.cn作者简介:程雪,女,硕士研究生,研究方向 :植物基因组与抗逆;E-mail: cx17338116517@163.com
CHENG Xue1(
), FU Ying2, CHAI Xiao-jiao2, WANG Hong-yan1, DENG Xin1(
)
Received:2025-02-23
Published:2025-08-26
Online:2025-08-14
摘要:
目的 捕光复合体(LHC)是光合作用光系统的重要结构组成,也参与非生物胁迫响应。从全基因组水平鉴定C4植物谷子的LHC基因家族,分析其在非生物胁迫下的表达模式,为谷子光合作用相关基因的功能研究及分子育种提供理论支持。 方法 在谷子基因组中获取LHC基因家族成员,进行系统发育、蛋白理化性质和亚细胞定位、基因结构、保守基序、启动子顺式作用元件分析,并结合转录组和RT-qPCR技术分析其在不同组织和非生物胁迫条件下的基因表达。 结果 在谷子中共鉴定出30个LHC基因家族成员,分属于Lhc、Lil、PsbS和FCⅡ 4个亚家族,不均匀地分布在9条染色体上;共线性分析发现有1对片段重复基因和2对串联重复基因;顺式作用元件分析发现,启动子上游均含有光响应、激素响应、非生物胁迫响应和植物防御和应激响应元件;蛋白结构预测显示,二级结构以α-螺旋和无规则卷曲为主,三级结构具有亚家族特异性,SiLhc亚家族内部蛋白相互作用较强;转录组分析发现,有27个基因在叶片中表达量最高,同一亚家族内成员对相同胁迫可能存在功能分化,遗传背景也可造成非生物胁迫的差异化响应;RT-qPCR分析发现,SiLhcb4、SiLhcb5和SiFCⅡ属于非生物胁迫敏感基因,在干旱、盐和碱胁迫中均显著下调表达。 结论 SiLHC各亚家族基因在结构和功能上具有相似性,在转录水平对非生物胁迫响应存在差异,作为光合系统基因可能参与非生物胁迫表达调控。
程雪, 付颖, 柴晓娇, 王红艳, 邓欣. 谷子LHC基因家族鉴定及非生物胁迫表达分析[J]. 生物技术通报, 2025, 41(8): 102-114.
CHENG Xue, FU Ying, CHAI Xiao-jiao, WANG Hong-yan, DENG Xin. Identification of LHC Gene Family in Setaria italica and Expression Analysis under Abiotic Stresses[J]. Biotechnology Bulletin, 2025, 41(8): 102-114.
| 序列 Sequence | 长度Length (bp) | 非同义替换率Ka | 同义替换率Ks | Ka/Ks | P值 P-Value |
|---|---|---|---|---|---|
| SiLhcb1.3-SiLhcb1.1 | 756 | 0.063 463 | 3.272 160 | 0.019 395 | 1.08E-54 |
| SiELIP2-SiELIP4 | 531 | 0.125 683 | 1.911 790 | 0.065 741 | 1.13E-21 |
| SiELIP4-SiELIP3 | 534 | 0.042 981 | 0.456 438 | 0.094 166 | 7.90E-12 |
表1 SiLHC重复基因对特征
Table 1 Characteristics of SiLHC duplicates identified in this study
| 序列 Sequence | 长度Length (bp) | 非同义替换率Ka | 同义替换率Ks | Ka/Ks | P值 P-Value |
|---|---|---|---|---|---|
| SiLhcb1.3-SiLhcb1.1 | 756 | 0.063 463 | 3.272 160 | 0.019 395 | 1.08E-54 |
| SiELIP2-SiELIP4 | 531 | 0.125 683 | 1.911 790 | 0.065 741 | 1.13E-21 |
| SiELIP4-SiELIP3 | 534 | 0.042 981 | 0.456 438 | 0.094 166 | 7.90E-12 |
基因名称 Gene name | 基因ID Gene ID | 氨基酸长度 Amino acid (aa) | 分子量 Molecular weight (Da) | 等电点 Isoelectric point | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|
| SiLhca1 | SETIT_006996 | 300 | 32 325.10 | 8.98 | 叶绿体 Chloroplast |
| SiLhca2 | SETIT_030861 | 259 | 28 139.03 | 5.64 | 叶绿体 Chloroplast |
| SiLhca4 | SETIT_014351 | 245 | 26 833.58 | 6.59 | 叶绿体 Chloroplast |
| SiLhca5 | SETIT_018111 | 264 | 28 294.48 | 7.14 | 叶绿体 Chloroplast |
| SiLhca6 | SETIT_030730 | 283 | 31 105.72 | 7.08 | 叶绿体 Chloroplast |
| SiLhcb1.1 | SETIT_004733 | 254 | 26 671.46 | 5.74 | 叶绿体 Chloroplast |
| SiLhcb1.2 | SETIT_030845 | 261 | 27 714.64 | 5.14 | 叶绿体 Chloroplast |
| SiLhcb1.3 | SETIT_002579 | 265 | 28 098.12 | 5.30 | 叶绿体 Chloroplast |
| SiLhcb1.4 | SETIT_024648 | 260 | 27 692.70 | 5.14 | 叶绿体 Chloroplast |
| SiLhcb2 | SETIT_037076 | 263 | 28 324.49 | 5.37 | 叶绿体 Chloroplast |
| SiLhcb3 | SETIT_030808 | 268 | 28 764.88 | 5.11 | 叶绿体 Chloroplast |
| SiLhcb4 | SETIT_030702 | 290 | 31 265.47 | 5.32 | 叶绿体 Chloroplast |
| SiLhcb5 | SETIT_026725 | 283 | 30 168.51 | 5.32 | 叶绿体 Chloroplast |
| SiLhcb6 | SETIT_010905 | 252 | 26 986.07 | 6.84 | 叶绿体 Chloroplast |
| SiLhcb7 | SETIT_030569 | 317 | 34 709.22 | 8.69 | 叶绿体 Chloroplast |
| SiPsbS | SETIT_002574 | 265 | 27 490.14 | 9.07 | 叶绿体 Chloroplast |
| SiELIP1 | SETIT_032863 | 210 | 21 305.45 | 11.00 | 叶绿体 Chloroplast |
| SiELIP2 | SETIT_031233 | 181 | 18 219.94 | 9.80 | 叶绿体 Chloroplast |
| SiELIP3 | SETIT_031943 | 183 | 18 555.33 | 9.80 | 叶绿体 Chloroplast |
| SiELIP4 | SETIT_032777 | 183 | 18 594.27 | 6.59 | 叶绿体 Chloroplast |
| SiOHP1 | SETIT_038118 | 112 | 11 944.39 | 9.79 | 叶绿体 Chloroplast |
| SiOHP2 | SETIT_003004 | 193 | 20 471.71 | 9.64 | 细胞核 Nuclear |
| SiSEP1.1 | SETIT_019774 | 110 | 11 124.90 | 11.55 | 叶绿体 Chloroplast |
| SiSEP1.2 | SETIT_038042 | 125 | 12 592.58 | 11.92 | 叶绿体 Chloroplast |
| SiSEP1.3 | SETIT_026990 | 137 | 13 732.99 | 11.65 | 叶绿体 Chloroplast |
| SiSEP2 | SETIT_011102 | 196 | 20 095.81 | 4.74 | 叶绿体 Chloroplast |
| SiSEP3 | SETIT_018140 | 257 | 28 125.99 | 5.89 | 叶绿体 Chloroplast |
| SiSEP5 | SETIT_018589 | 152 | 16 146.67 | 10.18 | 叶绿体 Chloroplast |
| SiPsb33 | SETIT_026739 | 277 | 29 647.75 | 5.73 | 叶绿体 Chloroplast |
| SiFCII | SETIT_0164622 | 141 | 15 542.81 | 4.37 | 细胞质 Cytoplasmic |
表2 SiLHCs蛋白理化性质和亚细胞定位预测
Table 2 SiLHCs analysis of physicochemical properties and subcellular localization
基因名称 Gene name | 基因ID Gene ID | 氨基酸长度 Amino acid (aa) | 分子量 Molecular weight (Da) | 等电点 Isoelectric point | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|
| SiLhca1 | SETIT_006996 | 300 | 32 325.10 | 8.98 | 叶绿体 Chloroplast |
| SiLhca2 | SETIT_030861 | 259 | 28 139.03 | 5.64 | 叶绿体 Chloroplast |
| SiLhca4 | SETIT_014351 | 245 | 26 833.58 | 6.59 | 叶绿体 Chloroplast |
| SiLhca5 | SETIT_018111 | 264 | 28 294.48 | 7.14 | 叶绿体 Chloroplast |
| SiLhca6 | SETIT_030730 | 283 | 31 105.72 | 7.08 | 叶绿体 Chloroplast |
| SiLhcb1.1 | SETIT_004733 | 254 | 26 671.46 | 5.74 | 叶绿体 Chloroplast |
| SiLhcb1.2 | SETIT_030845 | 261 | 27 714.64 | 5.14 | 叶绿体 Chloroplast |
| SiLhcb1.3 | SETIT_002579 | 265 | 28 098.12 | 5.30 | 叶绿体 Chloroplast |
| SiLhcb1.4 | SETIT_024648 | 260 | 27 692.70 | 5.14 | 叶绿体 Chloroplast |
| SiLhcb2 | SETIT_037076 | 263 | 28 324.49 | 5.37 | 叶绿体 Chloroplast |
| SiLhcb3 | SETIT_030808 | 268 | 28 764.88 | 5.11 | 叶绿体 Chloroplast |
| SiLhcb4 | SETIT_030702 | 290 | 31 265.47 | 5.32 | 叶绿体 Chloroplast |
| SiLhcb5 | SETIT_026725 | 283 | 30 168.51 | 5.32 | 叶绿体 Chloroplast |
| SiLhcb6 | SETIT_010905 | 252 | 26 986.07 | 6.84 | 叶绿体 Chloroplast |
| SiLhcb7 | SETIT_030569 | 317 | 34 709.22 | 8.69 | 叶绿体 Chloroplast |
| SiPsbS | SETIT_002574 | 265 | 27 490.14 | 9.07 | 叶绿体 Chloroplast |
| SiELIP1 | SETIT_032863 | 210 | 21 305.45 | 11.00 | 叶绿体 Chloroplast |
| SiELIP2 | SETIT_031233 | 181 | 18 219.94 | 9.80 | 叶绿体 Chloroplast |
| SiELIP3 | SETIT_031943 | 183 | 18 555.33 | 9.80 | 叶绿体 Chloroplast |
| SiELIP4 | SETIT_032777 | 183 | 18 594.27 | 6.59 | 叶绿体 Chloroplast |
| SiOHP1 | SETIT_038118 | 112 | 11 944.39 | 9.79 | 叶绿体 Chloroplast |
| SiOHP2 | SETIT_003004 | 193 | 20 471.71 | 9.64 | 细胞核 Nuclear |
| SiSEP1.1 | SETIT_019774 | 110 | 11 124.90 | 11.55 | 叶绿体 Chloroplast |
| SiSEP1.2 | SETIT_038042 | 125 | 12 592.58 | 11.92 | 叶绿体 Chloroplast |
| SiSEP1.3 | SETIT_026990 | 137 | 13 732.99 | 11.65 | 叶绿体 Chloroplast |
| SiSEP2 | SETIT_011102 | 196 | 20 095.81 | 4.74 | 叶绿体 Chloroplast |
| SiSEP3 | SETIT_018140 | 257 | 28 125.99 | 5.89 | 叶绿体 Chloroplast |
| SiSEP5 | SETIT_018589 | 152 | 16 146.67 | 10.18 | 叶绿体 Chloroplast |
| SiPsb33 | SETIT_026739 | 277 | 29 647.75 | 5.73 | 叶绿体 Chloroplast |
| SiFCII | SETIT_0164622 | 141 | 15 542.81 | 4.37 | 细胞质 Cytoplasmic |
图8 不同组织和非生物胁迫处理中SiLHC基因表达热图A:不同组织中SiLHCs的表达;B:干旱胁迫下SiLHCs在叶片中的表达;C:盐胁迫下SiLHCs在叶片中的表达。CK表示对照;S表示盐处理;D表示干旱处理;Ci134、Ci328、Ci409、Ci603、JG21、HG2000、PHY表示谷子名称
Fig. 8 Heatmap of SiLHC gene expressions in different tissues and abiotic stressesA: Expressions of SiLHCs in different tissues. B: Expressions of SiLHCs in the leaves under drought stress. C: Expressions of SiLHCs in the leaves under salt stress. CK indicates the control group; S indicates salt treatment; D indicates drought treatment. Ci134, Ci328, Ci409, Ci603, JG21, HG2000 and PHY indicate names of S. italica varieties
图9 SiLHCs在非生物胁迫下的表达A:干旱胁迫;B:盐胁迫;C:碱胁迫;*,**,*** 分别表示 P<0.05,P<0.01,P<0.001
Fig. 9 Expressions of SiLHCs under abiotic stressesA: Drought stress. B: Salt stress. C: Alkali stress. *, **, and *** indicates P<0.05, P<0.01, and P<0.001, respectively
| [1] | Engelken J, Brinkmann H, Adamska I. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily [J]. BMC Evol Biol, 2010, 10: 233. |
| [2] | Lan YH, Song Y, Zhao F, et al. Phylogenetic, structural and functional evolution of the LHC gene family in plant species [J]. Int J Mol Sci, 2022, 24(1): 488. |
| [3] | Jansson S. A guide to the Lhc genes and their relatives in Arabidopsis [J]. Trends Plant Sci, 1999, 4(6): 236-240. |
| [4] | Pan XW, Ma J, Su XD, et al. Structure of the maize photosystem Ⅰ super complex with light-harvesting complexes Ⅰ and Ⅱ [J]. Science, 2018, 360(6393): 1109-1113. |
| [5] | Chen LL, Rodriguez-Heredia M, Hanke GT, et al. Distinct features of PsbS essential for mediating plant photoprotection [J]. Plant Commun, 2025, 6(1): 101179. |
| [6] | Levin G, Schuster G. LHC-like proteins: the guardians of photosynthesis [J]. Int J Mol Sci, 2023, 24(3): 2503. |
| [7] | Fan TT, Roling L, Hedtke B, et al. FC2 stabilizes POR and suppresses ALA formation in the tetrapyrrole biosynthesis pathway [J]. New Phytol, 2023, 239(2): 624-638. |
| [8] | He Q, Tang S, Zhi H, et al. A graph-based genome and pan-genome variation of the model plant Setaria [J]. Nat Genet, 2023, 55(7): 1232-1242. |
| [9] | Kalsi R, Bhasin JK. Nutritional exploration of foxtail millet (Setaria italica) in addressing food security and its utilization trends in food system [J]. eFood, 2023, 4(5): e111. |
| [10] | Croce R, Carmo-Silva E, Cho YB, et al. Perspectives on improving photosynthesis to increase crop yield [J]. Plant Cell, 2024, 36(10): 3944-3973. |
| [11] | Sharma A, Kumar V, Shahzad B, et al. Photosynthetic response of plants under different abiotic stresses: a review [J]. J Plant Growth Regul, 2020, 39(2): 509-531. |
| [12] | Chauhan J, Prathibha M, Singh P, et al. Plant photosynthesis under abiotic stresses: damages, adaptive, and signaling mechanisms [J]. Plant Stress, 2023, 10: 100296. |
| [13] | Singh J, Thakur JK. Photosynthesis and abiotic stress in plants [M]//Biotic and Abiotic Stress Tolerance in Plants. Singapore: Springer Singapore, 2018: 27-46. |
| [14] | Chen LP, Yang WB, Liu SQ, et al. Genome-wide analysis and identification of light-harvesting chlorophyll a/b binding (LHC) gene family and BSMV-VIGS silencing TaLHC86 reduced salt tolerance in wheat [J]. Int J Biol Macromol, 2023, 242: 124930. |
| [15] | 陈刘平. 小麦TaRING-H2和TaLHC基因家族鉴定及TaSDIR1和TaLHC86的耐盐性分析 [D]. 杨凌: 西北农林科技大学, 2023. |
| Chen LP. Identification of TaRING-H2 and TaLHC gene families in wheat and analysis of salt tolerance of TaSDIR1 and TaLHC86 [D]. Yangling: Northwest A & F University, 2023. | |
| [16] | Zhao S, Gao HB, Luo JW, et al. Genome-wide analysis of the light-harvesting chlorophyll a/b-binding gene family in apple (Malus domestica) and functional characterization of MdLhcb4.3, which confers tolerance to drought and osmotic stress [J]. Plant Physiol Biochem, 2020, 154: 517-529. |
| [17] | Zhang HY, Wang YL, Song XY, et al. BcLhcb2.1, a Light-harvesting chlorophyll a/b-binding protein from Wucai, plays a positive regulatory role in the response to abiotic stress [J]. Sci Hortic, 2025, 339: 113759. |
| [18] | Han S, Han XW, Hou L, et al. Comprehensive analysis of Capsicum annuum CaLhcs uncovered the roles of CaLhca5.1 and CaLhcb1.7 in photosynthesis and stress tolerance [J]. Int J Biol Macromol, 2024, 282: 137548. |
| [19] | Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput [J]. Nucleic Acids Res, 2004, 32(5): 1792-1797. |
| [20] | Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses [J]. Bioinformatics, 2009, 25(15): 1972-1973. |
| [21] | Wang YP, Tang HB, Debarry JD, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity [J]. Nucleic Acids Res, 2012, 40(7): e49. |
| [22] | Zhang RL, Zhi H, Li YH, et al. Response of multiple tissues to drought revealed by a weighted gene co-expression network analysis in foxtail millet [Setaria italica (L.) P. beauv.] [J]. Front Plant Sci, 2022, 12: 746166. |
| [23] | Shen J, Guo MJ, Wang YG, et al. An investigation into the beneficial effects and molecular mechanisms of humic acid on foxtail millet under drought conditions [J]. PLoS One, 2020, 15(6): e0234029. |
| [24] | Han F, Sun MJ, He W, et al. Transcriptome analysis reveals molecular mechanisms under salt stress in leaves of foxtail millet (Setaria italica L.) [J]. Plants, 2022, 11(14): 1864. |
| [25] | Shi JP, Ma XX, Zhang JH, et al. Chromosome conformation capture resolved near complete genome assembly of broomcorn millet [J]. Nat Commun, 2019, 10(1): 464. |
| [26] | VanBuren R, Pardo J, Wai CM, et al. Massive tandem proliferation of ELIPs supports convergent evolution of desiccation tolerance across land plants [J]. Plant Physiol, 2019, 179(3): 1040-1049. |
| [27] | Magadum S, Banerjee U, Murugan P, et al. Gene duplication as a major force in evolution [J]. J Genet, 2013, 92(1): 155-161. |
| [28] | Luo J, Abid M, Tu J, et al. Genome-wide identification of the LHC gene family in kiwifruit and regulatory role of AcLhcb3.1/3.2 for chlorophyll a content [J]. Int J Mol Sci, 2022, 23(12): 6528. |
| [29] | Gururani MA, Venkatesh J, Tran LSP. Regulation of photosynthesis during abiotic stress-induced photoinhibition [J]. Mol Plant, 2015, 8(9): 1304-1320. |
| [30] | Han XW, Han S, Li YT, et al. Double roles of light-harvesting chlorophyll a/b binding protein TaLhc2 in wheat stress tolerance and photosynthesis [J]. Int J Biol Macromol, 2023, 253: 127215. |
| [31] | Li X, Jiang Z, Zhang C, et al. Correction: Comparative genomics analysis provides insights into evolution and stress responses of Lhcb genes in Rosaceae fruit crops [J]. BMC Plant Biol, 2023, 23(1): 642. |
| [32] | Zou Z, Xiao YH, Zhang L, et al. Analysis of Lhc family genes reveals development regulation and diurnal fluctuation expression patterns in Cyperus esculentus, a Cyperaceae plant [J]. Planta, 2023, 257(3): 59. |
| [33] | 王云鹤. 苎麻Lhc基因的鉴定和表达模式研究 [D]. 武汉: 华中农业大学, 2020. |
| Wang YH. Identification and expression profiling of Lhc genes in ramie [D]. Wuhan: Huazhong Agricultural University, 2020. | |
| [34] | Khan N, Choi SH, Lee CH, et al. Photosynthesis: genetic strategies adopted to gain higher efficiency [J]. Int J Mol Sci, 2024, 25(16): 8933. |
| [35] | Xue TY, Wan HP, Chen JD, et al. Genome-wide identification and expression analysis of the chlorophyll a/b binding protein gene family in oilseed (Brassica napus L.) under salt stress conditions [J]. Plant Stress, 2024, 11: 100339. |
| [36] | Wang L, Wei J, Shi XY, et al. Identification of the light-harvesting chlorophyll a/b binding protein gene family in peach (Prunus persica L.) and their expression under drought stress [J]. Genes, 2023, 14(7): 1475. |
| [1] | 陈强, 于璎霏, 张颖, 张冲. 茉莉酸甲酯对薄皮甜瓜‘绿宝石’采后冷害的调控[J]. 生物技术通报, 2025, 41(9): 1-10. |
| [2] | 付博晗, 毛华, 赵薪程, 陆虹, 欧庸彬, 姚银安. 不同杨树SOS1基因启动子的克隆及盐胁迫响应分析[J]. 生物技术通报, 2025, 41(7): 205-213. |
| [3] | 韩燚, 侯昌林, 唐露, 孙璐, 谢晓东, 梁晨, 陈小强. 大麦HvERECTA基因的克隆及功能分析[J]. 生物技术通报, 2025, 41(7): 106-116. |
| [4] | 郭秀娟, 冯宇, 吴瑞香, 王利琴, 杨建春. Ca2+处理对胡麻种子萌发影响的转录组分析[J]. 生物技术通报, 2025, 41(7): 139-149. |
| [5] | 李霞, 张泽伟, 刘泽军, 王楠, 郭江波, 辛翠花, 张彤, 简磊. 马铃薯转录因子StMYB96的克隆及功能研究[J]. 生物技术通报, 2025, 41(7): 181-192. |
| [6] | 王芳, 乔帅, 宋伟, 崔鹏娟, 廖安忠, 谭文芳, 杨松涛. 甘薯IbNRT2基因家族全基因组鉴定和表达分析[J]. 生物技术通报, 2025, 41(7): 193-204. |
| [7] | 龚钰涵, 陈兰, 尚方慧子, 郝灵颖, 刘硕谦. 茶树TRB基因家族鉴定及表达模式分析[J]. 生物技术通报, 2025, 41(7): 214-225. |
| [8] | 魏雨佳, 李岩, 康语涵, 弓晓楠, 杜敏, 涂岚, 石鹏, 于子涵, 孙彦, 张昆. 白颖苔草CrMYB4基因的克隆和表达分析[J]. 生物技术通报, 2025, 41(7): 248-260. |
| [9] | 张泽, 杨秀丽, 宁东贤. 花生4CL基因家族鉴定及对干旱与盐胁迫响应分析[J]. 生物技术通报, 2025, 41(7): 117-127. |
| [10] | 张学琼, 潘素君, 李魏, 戴良英. 植物磷酸盐转运蛋白在胁迫响应中的研究进展[J]. 生物技术通报, 2025, 41(7): 28-36. |
| [11] | 李新妮, 李俊怡, 马雪华, 何卫, 李佳丽, 于佳, 曹晓宁, 乔治军, 刘思辰. 谷子果胶甲酯酶抑制子PMEI基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2025, 41(7): 150-163. |
| [12] | 王苗苗, 赵相龙, 王召明, 刘志鹏, 闫龙凤. 花苜蓿TCP基因家族的鉴定及其在干旱胁迫下的表达模式分析[J]. 生物技术通报, 2025, 41(6): 179-190. |
| [13] | 黄丹, 彭兵阳, 张盼盼, 焦悦, 吕佳斌. 油茶HD-Zip基因家族鉴定及其在非生物胁迫下的表达分析[J]. 生物技术通报, 2025, 41(6): 191-207. |
| [14] | 吴浩, 董伟峰, 贺子天, 李艳肖, 谢辉, 孙明哲, 沈阳, 孙晓丽. 水稻BXL基因家族的全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(6): 87-98. |
| [15] | 宗建伟, 邓海芳, 蔡沅原, 常雅雯, 朱雅琦, 杨雨华. AM真菌对干旱胁迫下文冠果根系形态和叶片结构耦合的影响[J]. 生物技术通报, 2025, 41(6): 167-178. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||