| [1] |
Yuan MK, Gao YP, Han J, et al. The development and application of genome editing technology in ruminants: a review [J]. Front Agr Sci Eng, 2020, 7(2): 171.
|
| [2] |
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain [J]. Proc Natl Acad Sci USA, 1996, 93(3): 1156-1160.
|
| [3] |
Carroll D. Genome engineering with zinc-finger nucleases [J]. Genetics, 2011, 188(4): 773-782.
|
| [4] |
Akram F, Sahreen S, Aamir F, et al. An insight into modern targeted genome-editing technologies with a special focus on CRISPR/Cas9 and its applications [J]. Mol Biotechnol, 2023, 65(2): 227-242.
|
| [5] |
Bibikova M, Carroll D, Segal DJ, et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases [J]. Mol Cell Biol, 2001, 21(1): 289-297.
|
| [6] |
Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases [J]. Genetics, 2010, 186(2): 757-761.
|
| [7] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337(6096): 816-821.
|
| [8] |
Khan SH. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application [J]. Mol Ther Nucleic Acids, 2019, 16: 326-334.
|
| [9] |
Wang M, Ding FR, Wang HP, et al. Versatile generation of precise gene edits in bovines using SEGCPN [J]. BMC Biol, 2023, 21(1): 226.
|
| [10] |
Sendai Y, Sawada T, Urakawa M, et al. Heterozygous disruption of the alpha1, 3-galactosyltransferase gene in cattle [J]. Transplantation, 2003, 76(6): 900-902.
|
| [11] |
Kuroiwa Y, Kasinathan P, Matsushita H, et al. Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle [J]. Nat Genet, 2004, 36(7): 775-780.
|
| [12] |
Carlson DF, Lancto CA, Zang B, et al. Production of hornless dairy cattle from genome-edited cell lines [J]. Nat Biotechnol, 2016, 34(5): 479-481.
|
| [13] |
Heo YT, Quan XY, Xu YN, et al. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells [J]. Stem Cells Dev, 2015, 24(3): 393-402.
|
| [49] |
Moghaddassi S, Eyestone W, Bishop CE. TALEN-mediated modification of the bovine genome for large-scale production of human serum albumin [J]. PLoS One, 2014, 9(2): e89631.
|
| [50] |
谭光万, 王秀东, 王济民, 等. 新形势下国家食物安全战略研究 [J]. 中国工程科学, 2023, 25(4): 1-13.
|
|
Tan GW, Wang XD, Wang JM, et al. National food security strategy in the new situation [J]. Strateg Study CAE, 2023, 25(4): 1-13.
|
| [51] |
Rubin BE, Diamond S, Cress BF, et al. Species- and site-specific genome editing in complex bacterial communities [J]. Nat Microbiol, 2022, 7(1): 34-47.
|
| [14] |
Harrison C. CRISPR beef cattle get FDA green light [J]. Nat Biotechnol, 2022, 40(4): 448.
|
| [15] |
Workman AM, Heaton MP, Vander Ley BL, et al. First gene-edited calf with reduced susceptibility to a major viral pathogen [J]. PNAS Nexus, 2023, 2(5): pgad125.
|
| [16] |
Yu SL, Luo JJ, Song ZY, et al. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle [J]. Cell Res, 2011, 21(11): 1638-1640.
|
| [17] |
Wu HB, Wang YS, Zhang Y, et al. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis [J]. Proc Natl Acad Sci USA, 2015, 112(13): E1530-E1539.
|
| [18] |
魏著英, 白春玲, 杨磊, 等. 肉牛Myostatin基因编辑育种研究 [J]. 中国畜禽种业, 2022, 18(10): 30-33.
|
|
Wei ZY, Bai CL, Yang L, et al. Research on Myostatin gene editing breeding of beef cattle [J]. The Chinese Livestock and Poultry Breeding, 2022, 18(10): 30-33.
|
| [19] |
Shanthalingam S, Srikumaran S. Intact signal peptide of CD18, the beta-subunit of beta2-integrins, renders ruminants susceptible to Mannheimia haemolytica leukotoxin [J]. Proc Natl Acad Sci USA, 2009, 106(36): 15448-15453.
|
| [20] |
Liu ZG, Wu TW, Xiang GM, et al. Enhancing animal disease resistance, production efficiency, and welfare through precise genome editing [J]. Int J Mol Sci, 2022, 23(13): 7331.
|
| [21] |
Shanthalingam S, Tibary A, Beever JE, et al. Precise gene editing paves the way for derivation of Mannheimia haemolytica leukotoxin-resistant cattle [J]. Proc Natl Acad Sci USA, 2016, 113(46): 13186-13190.
|
| [22] |
Gao YP, Wu HB, Wang YS, et al. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects [J]. Genome Biol, 2017, 18(1): 13.
|
| [23] |
Liu X, Wang YS, Tian YC, et al. Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases [J]. Proc Biol Sci, 2014, 281(1780): 20133368.
|
| [24] |
Yuan MK, Zhang JC, Gao YP, et al. HMEJ-based safe-harbor genome editing enables efficient generation of cattle with increased resistance to tuberculosis [J]. J Biol Chem, 2021, 296: 100497.
|
| [25] |
Bevacqua RJ, Fernandez-Martín R, Savy V, et al. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system [J]. Theriogenology, 2016, 86(8): 1886-1896.e1.
|
| [26] |
Wang M, Sun ZL, Ding FR, et al. Efficient TALEN-mediated gene knockin at the bovine Y chromosome and generation of a sex-reversal bovine [J]. Cell Mol Life Sci, 2021, 78(13): 5415-5425.
|
| [27] |
Owen JR, Hennig SL, McNabb BR, et al. One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes [J]. BMC Genomics, 2021, 22(1): 118.
|
| [28] |
Zhao XL, Nie JY, Tang YY, et al. Generation of transgenic cloned buffalo embryos harboring the EGFP gene in the Y chromosome using CRISPR/Cas9-mediated targeted integration [J]. Front Vet Sci, 2020, 7: 199.
|
| [29] |
Tan WF, Carlson DF, Lancto CA, et al. Efficient nonmeiotic allele introgression in livestock using custom endonucleases [J]. Proc Natl Acad Sci USA, 2013, 110(41): 16526-16531.
|
| [30] |
Berman A, Folman Y, Kaim M, et al. Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical climate [J]. J Dairy Sci, 1985, 68(6): 1488-1495.
|
| [31] |
Liu SH, Yue TT, Ahmad MJ, et al. Transcriptome analysis reveals potential regulatory genes related to heat tolerance in Holstein dairy cattle [J]. Genes, 2020, 11(1): 68.
|
| [32] |
Bunch H, Calderwood SK. Role of heat shock factors in stress-induced transcription: an update [J]. Methods Mol Biol, 2023, 2693: 25-38.
|
| [33] |
Wang LY, Gao YP, Wang JP, et al. Selection signature and CRISPR/Cas9-mediated gene knockout analyses reveal ZC3H10 involved in cold adaptation in Chinese native cattle [J]. Genes, 2022, 13(10): 1910.
|
| [34] |
Shandilya UK, Sharma A, Sodhi M, et al. Editing of HSF-1 and Na/K-ATPase α1 subunit by CRISPR/Cas9 reduces thermal tolerance of bovine skin fibroblasts to heat shock in vitro [J]. Anim Biotechnol, 2023, 34(8): 3626-3636.
|
| [35] |
Sun ZL, Wang M, Han SW, et al. Production of hypoallergenic milk from DNA-free beta-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA [J]. Sci Rep, 2018, 8(1): 15430.
|
| [36] |
Tara A, Singh P, Gautam D, et al. CRISPR-mediated editing of β-lactoglobulin (BLG) gene in buffalo [J]. Sci Rep, 2024, 14(1): 14822.
|
| [37] |
Luo JJ, Song ZY, Yu SL, et al. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases [J]. PLoS One, 2014, 9(4): e95225.
|
| [38] |
Wu X, Ouyang HS, Duan B, et al. Production of cloned transgenic cow expressing omega-3 fatty acids [J]. Transgenic Res, 2012, 21(3): 537-543.
|
| [39] |
Guo T, Liu XF, Ding XB, et al. Fat-1 transgenic cattle as a model to study the function of ω-3 fatty acids [J]. Lipids Health Dis, 2011, 10: 244.
|
| [40] |
Liu XF, Bai CL, Ding XB, et al. Microarray analysis of the gene expression profile and lipid metabolism in fat-1 transgenic cattle [J]. PLoS One, 2015, 10(10): e0138874.
|
| [41] |
Liu XF, Wei ZY, Bai CL, et al. Insights into the function of n-3 PUFAs in fat-1 transgenic cattle [J]. J Lipid Res, 2017, 58(8): 1524-1535.
|
| [42] |
孔亮亮, 于建荣. 转基因动物育种产业化现状和发展趋势 [J]. 生物产业技术, 2013(5): 52-58.
|
|
Kong LL, Yu JR. Present situation and development trend of transgenic animal breeding industrialization [J]. Biotechnol Bus, 2013(5): 52-58.
|
| [43] |
Ikeda M, Matsuyama S, Akagi S, et al. Correction of a disease mutation using CRISPR/Cas9-assisted genome editing in Japanese black cattle [J]. Sci Rep, 2017, 7(1): 17827.
|
| [44] |
de Oliveira VC, Moreira GSA, Bressan FF, et al. Edition of TFAM gene by CRISPR/Cas9 technology in bovine model [J]. PLoS One, 2019, 14(3): e0213376.
|
| [45] |
de Oliveira VC, Gomes Mariano Junior C, Belizário JE, et al. Characterization of post-edited cells modified in the TFAM gene by CRISPR/Cas9 technology in the bovine model [J]. PLoS One, 2020, 15(7): e0235856.
|
| [46] |
Key J, Maletzko A, Kohli A, et al. Loss of mitochondrial ClpP, Lonp1, and Tfam triggers transcriptional induction of Rnf213, a susceptibility factor for moyamoya disease [J]. Neurogenetics, 2020, 21(3): 187-203.
|
| [47] |
Tucker EJ, Rius R, Jaillard S, et al. Genomic sequencing highlights the diverse molecular causes of Perrault syndrome: a peroxisomal disorder (PEX6), metabolic disorders (CLPP, GGPS1), and mtDNA maintenance/translation disorders (LARS2, TFAM) [J]. Hum Genet, 2020, 139(10): 1325-1343.
|
| [48] |
付玉华, 周秀梅, 钱其军. 乳腺生物反应器的研究和产业化进展 [J]. 中国畜牧兽医, 2010, 37(8): 45-51.
|
|
Fu YH, Zhou XM, Qian QJ. The current progress of mammary gland bioreactor for research and industry [J]. China Anim Husb Vet Med, 2010, 37(8): 45-51.
|