生物技术通报 ›› 2025, Vol. 41 ›› Issue (9): 314-325.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0287
• 研究报告 • 上一篇
闫梦阳1(
), 梁晓阳1, 戴君昂1, 张妍1, 关团3, 张辉1,2, 刘良波1,2, 孙志华1,2(
)
收稿日期:2025-03-18
出版日期:2025-09-26
发布日期:2025-09-24
通讯作者:
孙志华,男,博士,副教授,研究方向 :畜禽粪污资源化利用;E-mail: zhihuasun918@163.com作者简介:闫梦阳,女,硕士研究生,研究方向 :微生物降解抗生素机制;E-mail: 1786176908@ qq.com
基金资助:
YAN Meng-yang1(
), LIANG Xiao-yang1, DAI Jun-ang1, ZHANG Yan1, GUAN Tuan3, ZHANG Hui1,2, LIU Liang-bo1,2, SUN Zhi-hua1,2(
)
Received:2025-03-18
Published:2025-09-26
Online:2025-09-24
摘要:
目的 筛选生猪粪污中阿莫西林(AMX)高效降解菌并优化其降解条件,明确AMX的降解产物及途径,为清除环境中抗生素残留提供依据和参考。 方法 采用抗生素驯化法和高效液相色谱-串联质谱(HPLC-MS/MS)法对猪粪中AMX高效降解菌进行筛选,通过形态学观察及16S rDNA测序对高效降解菌进行菌种鉴定。采用单因素试验法对AMX高效降解菌的培养条件进行优化。探究了培养温度、pH值、接种量、抗生素初始浓度等因素对菌株降解AMX的影响。利用超高效液相色谱-串联质谱(UPLC-MS/MS)对阿莫西林降解过程中的产物进行了鉴定,以推测阿莫西林的降解途径。通过转录组测序,结合基因组学和生物信息学方法,对菌株AMX-1的DEGs进行了功能注释。 结果 分离筛选得到一株AMX高效降解菌,命名为菌株AMX-1,经形态学观察及分子生物学鉴定,菌株AMX-1被鉴定为大肠杆菌(Escherichia coli)。菌株AMX-1降解AMX的最佳条件为温度为35 ℃,pH为7.0,AMX初始浓度为50 mg/L,接种量为6%。在此条件下,48 h内AMX降解率达到100%。对AMX的降解产物进行鉴定,共鉴定出8种中间产物,提出了AMX的降解途径。转录组测序结果显示,786个降解必需基因通过头孢噻呋钠的水解而上调,基因注释结果表明AMX的降解与多种生物过程相关。 结论 成功从猪粪中筛选并鉴定出一株阿莫西林高效降解菌——大肠杆菌AMX-1。该菌株在优化条件下,48 h内对AMX的降解率可达100%。菌株AMX-1展现出的高效降解能力及明确的降解机制,为环境中阿莫西林残留的清除提供了重要的菌种资源和理论依据。
闫梦阳, 梁晓阳, 戴君昂, 张妍, 关团, 张辉, 刘良波, 孙志华. 阿莫西林降解菌的筛选及降解机制研究[J]. 生物技术通报, 2025, 41(9): 314-325.
YAN Meng-yang, LIANG Xiao-yang, DAI Jun-ang, ZHANG Yan, GUAN Tuan, ZHANG Hui, LIU Liang-bo, SUN Zhi-hua. Screening of Amoxicillin-degrading Bacteria and Study on Its Degradation Mechanisms[J]. Biotechnology Bulletin, 2025, 41(9): 314-325.
基因名称 Gene | 引物名称 Primer | 引物序列 Sequence (5′-3′) | 产物长度 Product length (bp) |
|---|---|---|---|
| nlpC | nlpC-F nlpC-R | ATGCTGGAACTACTTTTTGTAATTGG GCCCTGATCACCCACAC | 188 |
| aac6-Ib | aac6-Ib-F aac6-Ib-R | AGGGCCTTTAGTGGTCG GCTTCTGTTCAGCACGT | 203 |
| astE | astE-F astE-R | CAACTCAAACTACCACCGAGA GGTGACGGCGAATAGC | 195 |
| astB | astB-F astB-R | ATCAAAGGCATACTGGCAGG ATCACCCGAACTAAATCTTGTTG | 113 |
表1 RT-qPCR引物序列信息
Table 1 RT-qPCR primer sequence information
基因名称 Gene | 引物名称 Primer | 引物序列 Sequence (5′-3′) | 产物长度 Product length (bp) |
|---|---|---|---|
| nlpC | nlpC-F nlpC-R | ATGCTGGAACTACTTTTTGTAATTGG GCCCTGATCACCCACAC | 188 |
| aac6-Ib | aac6-Ib-F aac6-Ib-R | AGGGCCTTTAGTGGTCG GCTTCTGTTCAGCACGT | 203 |
| astE | astE-F astE-R | CAACTCAAACTACCACCGAGA GGTGACGGCGAATAGC | 195 |
| astB | astB-F astB-R | ATCAAAGGCATACTGGCAGG ATCACCCGAACTAAATCTTGTTG | 113 |
图1 菌株AMX-1的鉴定a-b : 分别为菌株 AMX-1 在MSM筛选培养基生长图及革兰氏镜检图; c : 菌株 AMX-1 的系统发育树
Fig. 1 Identification of strain AMX-1a-b: Growth images of strain AMX-1 in MSM screening medium and Gram staining microscopic images, respectively. c: Phylogenetic tree of strain AMX-1
图3 环境条件对AMX降解率的影响A-D:分别为温度、pH 值、AMX 初始浓度和接种量对菌株AMX-1降解AMX的影响;E:最佳条件下AMX的降解曲线。不同字母代表差异显著(P<0.05)
Fig. 3 Influence of environmental conditions on the degradation rate of AMXA-D: Effects of temperature, pH, initial concentration of AMX, and inoculum amount on AMX degradation by strain AMX-1, respectively; E: degradation curves of AMX under optimal conditions. Different letters indicate significant difference (P<0.05)
图5 AMX-1 转录本的注释结果A:差异表达基因火山图;B:菌株AMX-1转录组的 GO 功能注释;C:AMX-1 转录组的 KEGG 功能注释
Fig. 5 Annotations of AMX-1 transcriptsA: Volcanic maps of differentially expressed genes; B: GO functional annotation of the transcriptome of strain AMX-1; C: KEGG functional annotation of the AMX-1 transcriptome
| Gene name | Gene description | FC(a/b) | Log2FC(a/b) | P value |
|---|---|---|---|---|
| yhbO | General stress protein | 12.696 | 3.666 350 812 | 3.15×10 -124 |
| lepB | Signal peptidase | 7.871 | 2.976 563 759 | 2.46×10 -66 |
| aac6-Ib | Aminoglycoside 6-adenylyltransferase | 5.194 | 2.376 838 | 9.44×10 -86 |
| nlpC | Endopeptidase | 7.125 | 2.832 941 | 4.06×10 -66 |
| astE | Succinylglutamate desuccinylase | 17.152 | 4.100 312 827 | 4.54×10 -41 |
| astB | Succinylarginine dihydrolase | 9.291 | 3.215 854 657 | 3.64×10 -26 |
表2 AMX降解菌AMX-1中的差异表达基因(DEGs)
Table 2 Differentially expressed genes in the AMX-degrading bacterium AMX-1
| Gene name | Gene description | FC(a/b) | Log2FC(a/b) | P value |
|---|---|---|---|---|
| yhbO | General stress protein | 12.696 | 3.666 350 812 | 3.15×10 -124 |
| lepB | Signal peptidase | 7.871 | 2.976 563 759 | 2.46×10 -66 |
| aac6-Ib | Aminoglycoside 6-adenylyltransferase | 5.194 | 2.376 838 | 9.44×10 -86 |
| nlpC | Endopeptidase | 7.125 | 2.832 941 | 4.06×10 -66 |
| astE | Succinylglutamate desuccinylase | 17.152 | 4.100 312 827 | 4.54×10 -41 |
| astB | Succinylarginine dihydrolase | 9.291 | 3.215 854 657 | 3.64×10 -26 |
图6 转录组结果验证A:RT-qPCR结果验证;B:上调基因的功能验证
Fig. 6 Validation of transcriptome resultsA: Validation of RT-qPCR results; B: functional validation of upregulated genes. *** P<0.001
| [24] | Sodhi KK, Kumar M, Singh DK. Potential application in amoxicillin removal of Alcaligenes sp. MMA and enzymatic studies through molecular docking [J]. Arch Microbiol, 2020, 202(6): 1489-1495. |
| [25] | Zhang WW, Wen YY, Niu ZL, et al. Isolation and characterization of sulfonamide-degrading bacteria Escherichia sp. HS21 and Acinetobacter sp. HS51 [J]. World J Microbiol Biotechnol, 2012, 28(2): 447-452. |
| [26] | Tian JC, Chen C, Lartey-Young G, et al. Biodegradation of cefalexin by two bacteria strains from sewage sludge [J]. R Soc Open Sci, 2023, 10(1): 220442. |
| [27] | Bhatt P, Jeon CH, Kim W. Tetracycline bioremediation using the novel Serratia marcescens strain WW1 isolated from a wastewater treatment plant [J]. Chemosphere, 2022, 298: 134344. |
| [28] | Gamage PL, Ren YX, Slape CM, et al. Oxidative degradation of polypropylene mesh in E. coli environment [J]. ACS Appl Bio Mater, 2019, 2(9): 4027-4036. |
| [29] | 上海市农业科学院. 一种完全降解 2,4-二硝基甲苯的大肠杆菌工程菌的构建及其应用:CN202111481483.8 [P]. 2021-12-06. |
| Shanghai Academy of Agricultural Sciences. Construction and application of an Escherichia coli engineering strain for complete degradation of 2,4-dinitrotoluene: CN202111481483.8 [P]. 2021-12-06. | |
| [30] | Wang LJ, Peng RH, Tian YS, et al. Metabolic engineering of Escherichia coli for efficient degradation of 4-fluorophenol [J]. AMB Express, 2022, 12(1): 55. |
| [31] | 高廷耀, 顾国维, 周琪. 水污染控制工程-上册 [M]. 4版. 北京: 高等教育出版社, 2014. |
| Gao TY, Gu GW, Zhou Q. Water pollution control project-volume I [M]. 4th ed. Beijing: Higher Education Press, 2014. | |
| [32] | 周小红, 李学英, 杨宪时, 等. 接种量对单增李斯特菌生长期及生长界面的影响 [J]. 食品工业科技, 2014, 35(18): 180-184. |
| Zhou XH, Li XY, Yang XS, et al. Effect of inoculum size on growth phase and growth interface of Listeria monocytogenes under different cultural conditions [J]. Sci Technol Food Ind, 2014, 35(18): 180-184. | |
| [1] | Kumar M, Jaiswal S, Sodhi KK, et al. Antibiotics bioremediation: perspectives on its ecotoxicity and resistance [J]. Environ Int, 2019, 124: 448-461. |
| [2] | Huttner A, Bielicki J, Clements MN, et al. Oral amoxicillin and amoxicillin-clavulanic acid: properties, indications and usage [J]. Clin Microbiol Infect, 2020, 26(7): 871-879. |
| [3] | Sodhi KK, Kumar M, Singh DK. Insight into the amoxicillin resistance, ecotoxicity, and remediation strategies [J]. J Water Process Eng, 2021, 39: 101858. |
| [4] | Barbosa F, Pinto E, Kijjoa A, et al. Targeting antimicrobial drug resistance with marine natural products [J]. Int J Antimicrob Agents, 2020, 56(1): 106005. |
| [5] | Aksu Demirezen D, Yıldız YŞ, Demirezen Yılmaz D. Amoxicillin degradation using green synthesized iron oxide nanoparticles: Kinetics and mechanism analysis [J]. Environ Nanotechnol Monit Manag, 2019, 11: 100219. |
| [6] | Zhang YQ, Xiao YJ, Zhong Y, et al. Comparison of amoxicillin photodegradation in the UV/H2O2 and UV/persulfate systems: Reaction kinetics, degradation pathways, and antibacterial activity [J]. Chem Eng J, 2019, 372: 420-428. |
| [7] | Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants [J]. Environ Pollut, 2009, 157(11): 2893-2902. |
| [8] | Li P, Wang YR, Huang B, et al. Antibiotics in wastewater of Guangdong, China: distribution patterns, and their environmental risk due to incomplete removal [J]. Sci Total Environ, 2022, 849: 157889. |
| [9] | Fu CX, Xu BT, Chen H, et al. Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiongan New Area, China, and their relationship with antibiotic resistance genes [J]. Sci Total Environ, 2022, 807(Pt 2): 151011. |
| [10] | Li S, Liu Y, Wu Y, et al. Antibiotics in global rivers [J]. Natl Sci Open, 2022, 1(2): 20220029. |
| [11] | Ben YJ, Hu M, Zhang XY, et al. Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water [J]. Water Res, 2020, 175: 115699. |
| [12] | Chen ZB, Wang HC, Ren NQ, et al. Simultaneous removal and evaluation of organic substrates and NH3-N by a novel combined process in treating chemical synthesis-based pharmaceutical wastewater [J]. J Hazard Mater, 2011, 197: 49-59. |
| [13] | 周雅靓, 沙菁洲, 巫明毫, 等. 四川抗生素制药企业废水抗生素残留特征与风险评估 [J]. 中国抗生素杂志, 2021, 46(4): 346-352 |
| Zhou YL, Sha JZ, Wu MH, et al. Risk assessment of antibiotic residues and selective drug resistance in wastewater from antibiotic pharmaceutical enterprises in Sichuan [J]. Chinese Journal of Antibiotics, 2021,46(4):346-352 | |
| [14] | 刘烈, 李魁岭, 徐莉莉, 等. 电催化臭氧技术去除水中草酸的研究 [J]. 水处理技术, 2019, 45(8): 89-93, 102. |
| Liu L, Li KL, Xu LL, et al. Study on the degradation of oxalic acid in water by electro-peroxon technology [J]. Technol Water Treat, 2019, 45(8): 89-93, 102. | |
| [15] | Zhao JG, Li CT, Du XY, et al. Recent progress of carbon dots for air pollutants detection and photocatalytic removal: synthesis, modifications, and applications [J]. Small, 2022, 18(51): e2200744. |
| [16] | 刘元望, 李兆君, 冯瑶, 等. 微生物降解抗生素的研究进展 [J]. 农业环境科学学报, 2016, 35(2): 212-224. |
| Liu YW, Li ZJ, Feng Y, et al. Research progress in microbial degradation of antibiotics [J]. J Agro Environ Sci, 2016, 35(2): 212-224. | |
| [17] | Zhang T, Xu SY, Lin H, et al. Efficient degradation of tylosin by Klebsiella oxytoca TYL-T1 [J]. Sci Total Environ, 2022, 847: 157305. |
| [18] | Wei YJ, Zhou HK, Zhang J, et al. Insight into dominant cellulolytic bacteria from two biogas digesters and their glycoside hydrolase genes [J]. PLoS One, 2015, 10(6): e0129921. |
| [19] | Ahuactzin-Pérez M, Tlecuitl-Beristain S, García-Dávila J, et al. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling [J]. Sci Total Environ, 2016, 566/567: 1186-1193. |
| [20] | Elizalde-Velázquez A, Gómez-Oliván LM, Galar-Martínez M, et al. Amoxicillin in the aquatic environment, its fate and environmental risk [M]//Environmental Health Risk - Hazardous Factors to Living Species. InTech, 2016: 247-267. |
| [21] | Pereira JHOS, Reis AC, Homem V, et al. Solar photocatalytic oxidation of recalcitrant natural metabolic by-products of amoxicillin biodegradation [J]. Water Res, 2014, 65: 307-320. |
| [22] | Poudel RC, Joshi DR, Dhakal NR, et al. Occurrence of antibiotic resistant bacteria in environmental wastes [J]. Nat, 2010, 7(1): 151-157. |
| [23] | 耿歌. β-内酰胺类抗生素降解菌的分离鉴定及降解基因研究 [D]. 武汉: 华中师范大学, 2018. |
| Geng G. Isolation and identification of β-lactam antibiotic degrading bacteria and study on degrading genes [D]. Wuhan: Central China Normal University, 2018. | |
| [33] | 王春耀, 张德纯, 张名均, 等. 两歧双歧杆菌86321生长特性的研究 [J]. 中国微生态学杂志, 2011,23(8):706-708, 711. |
| Wang CY, Zhang DC, Zhang MJ, et al. Research on growth characteristics of Bifidobacterium bifidum 86321 [J]. Chinese Journal of Microecology, 2011,23(8):706-708, 711. | |
| [34] | Verma M., Haritash A.K.. Review of advanced oxidation processes(AOPs) for treatment of pharmaceutical wastewater [J]. Adv Environ Res, 2020, 9(1):1-17. |
| [35] | Yan L, Yan N, Gao XY, et al. Degradation of amoxicillin by newly isolated Bosea sp. ads-6 [J]. Sci Total Environ, 2022, 828: 154411. |
| [36] | Elizalde-Velázquez A, Gómez-Oliván LM, Galar-Martínez M, et al. Amoxicillin in the aquatic environment, its fate and environmental risk [M]//Environmental Health Risk - Hazardous Factors to Living Species. InTech, 2016: 247-267. |
| [1] | 苏秀敏, 韩文清, 王佼, 李鹏, 王秋兰, 李万星, 曹晋军. 哈茨木霉M408的分离鉴定、生物学特性及对番茄早疫病的生防效果[J]. 生物技术通报, 2025, 41(9): 277-288. |
| [2] | 刘泽洲, 段乃彬, 岳丽昕, 王清华, 姚行浩, 高莉敏, 孔素萍. 大蒜叶片蜡质成分分析及蜡质缺失基因Ggl-1筛选[J]. 生物技术通报, 2025, 41(9): 219-231. |
| [3] | 廉少杰, 唐胜硕, 康传利, 刘磊, 郑德强, 杜帅, 汤丽伟, 张美霞, 刘蔷. 高产银耳多糖酶菌株的分离、鉴定、发酵条件优化及其酶的特性分析[J]. 生物技术通报, 2025, 41(9): 302-313. |
| [4] | 张茹, 李一鸣, 张桐溪, 孙占斌, 任清, 潘寒姁. 厚朴中1株高产厚朴酚与和厚朴酚菌株的分离鉴定及其“发汗”工艺优化[J]. 生物技术通报, 2025, 41(8): 322-334. |
| [5] | 黄旭升, 周雅莉, 柴旭东, 闻婧, 王计平, 贾小云, 李润植. 紫苏质体型PfLPAT1B基因的克隆及其在油脂合成中的功能分析[J]. 生物技术通报, 2025, 41(7): 226-236. |
| [6] | 王月琛, 韩鑫骐, 魏文敏, 崔兆兰, 罗阳美, 陈鹏如, 王海岗, 刘龙龙, 张莉, 王纶. 黍稷落粒的生物学基础研究及落粒调控基因的鉴定[J]. 生物技术通报, 2025, 41(7): 164-171. |
| [7] | 李旭娟, 李纯佳, 刘洪博, 徐超华, 林秀琴, 陆鑫, 刘新龙. 甘蔗腋芽形成发育过程的转录组分析[J]. 生物技术通报, 2025, 41(3): 202-218. |
| [8] | 项波卡, 周钻钻, 冯佳卉, 夏琛, 李奇, 陈春. 一株烟叶霉变真菌的分离鉴定及其致霉因素研究[J]. 生物技术通报, 2025, 41(2): 321-330. |
| [9] | 饶峻, 赵晨, 李端华, 廖豪, 黄加雨, 王辂. 自诱导策略在麦角硫因生物合成中的应用[J]. 生物技术通报, 2025, 41(1): 333-346. |
| [10] | 张静安, 胡孝龙, 曹蓓蓓, 廖敏, 束长龙, 张杰, 王奎, 操海群. 苏云金芽胞杆菌可视化快速表达载体的构建与特性分析[J]. 生物技术通报, 2025, 41(1): 95-102. |
| [11] | 张亚亚, 李盼盼, 高惠惠, 贾晨波, 徐春燕. 基于根表真菌群落与病原菌鉴定探究‘宁杞5号’枸杞根腐病的发生机制[J]. 生物技术通报, 2024, 40(9): 238-248. |
| [12] | 岳丽昕, 王清华, 刘泽洲, 孔素萍, 高莉敏. 基于转录组和WGCNA筛选大葱雄性不育相关基因[J]. 生物技术通报, 2024, 40(9): 212-224. |
| [13] | 高萌萌, 赵天宇, 焦馨悦, 林春晶, 关哲允, 丁孝羊, 孙妍妍, 张春宝. 大豆细胞质雄性不育系及其恢复系的比较转录组分析[J]. 生物技术通报, 2024, 40(7): 137-149. |
| [14] | 王芳, 于璐, 齐泽铮, 周长军, 于吉东. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 2024, 40(7): 216-225. |
| [15] | 白志元, 徐菲, 杨午, 王明贵, 杨玉花, 张海平, 张瑞军. 大豆细胞质雄性不育弱恢复型杂种F1育性转变的转录组分析[J]. 生物技术通报, 2024, 40(6): 134-142. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||