生物技术通报 ›› 2025, Vol. 41 ›› Issue (3): 202-218.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0755

• 研究报告 • 上一篇    

甘蔗腋芽形成发育过程的转录组分析

李旭娟(), 李纯佳, 刘洪博, 徐超华, 林秀琴, 陆鑫, 刘新龙()   

  1. 1.热带作物生物育种全国重点实验室,昆明 650205
    2.云南省农业科学院甘蔗研究所 云南省甘蔗遗传改良重点实验室,开远 661699
  • 收稿日期:2024-08-06 出版日期:2025-03-26 发布日期:2025-03-20
  • 通讯作者: 刘新龙,男,博士,研究员,研究方向 :甘蔗分子育种;E-mail: lxlgood868@163.com
  • 作者简介:李旭娟,女,硕士,副研究员,研究方向 :甘蔗分子育种;E-mail: lixujuan2011@163.com
  • 基金资助:
    云南省基础研究面上项目(202301AT070009);云南种子种业联合实验室项目(202205AR070001-13);科技部、财政部国家科技资源共享服务平台项目(NCGRC-2023-42);甘蔗生长与环境云南省野外科学观测研究站(202205AM070001)

Transcriptome Analysis of Axillary Bud Formation and Development in Sugarcane

LI Xu-juan(), LI Chun-jia, LIU Hong-bo, XU Chao-hua, LIN Xiu-qin, LU Xin, LIU Xin-long()   

  1. 1.National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650205
    2.Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences / Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699
  • Received:2024-08-06 Published:2025-03-26 Online:2025-03-20

摘要:

目的 发掘甘蔗腋芽形成发育关键代谢通路和调控基因,为甘蔗优良品种选育及遗传改良策略制定提供基因资源。 方法 以甘蔗品种‘新台糖22号(XTT22)’为材料,分别选取其幼嫩、半大、成型、成熟腋芽,以茎尖生长点为对照。首先通过RNA-seq获得甘蔗腋芽形成发育4个时期的转录组文库,然后使用DESeq2软件筛选差异表达基因(DEGs),并开展GO和KEGG功能富集分析,再通过RT-qPCR验证转录组测序结果的可靠性,最后通过WGCNA挖掘与甘蔗腋芽形成发育相关的核心基因。 结果 甘蔗腋芽形成发育4个时期共获得62 630个差异表达基因,KEGG分析主要富集在甘露糖型O-聚糖的生物合成、吲哚生物碱生物合成、油菜素内酯生物合成等通路;KEGG富集通路网络分析表明:植物激素信号转导、氰胺酸代谢以及苯丙烷类物质生物合成等通路是腋芽形成发育中共同富集的核心通路,而β-丙氨酸代谢和氮代谢是幼嫩腋芽发育期的特有核心通路;C-5支链二元酸代谢,色氨酸代谢和脂肪酸延生通路分别是成型芽和成熟芽特有富集核心通路。9个表达趋势变化明显的DEGs的RT-qPCR结果与RNA-seq 结果呈现相似的表达模式。WGCNA分析鉴定了UBR7IRKPOLD等20个与甘蔗腋芽形成发育相关的核心基因。 结论 甘蔗腋芽形成发育过程中需要以甘露糖型O-聚糖、蔗糖、淀粉和氮素等作为物质和能量基础,同时还需要合成植物激素和次生代谢物来调控相关生长发育过程;UBR7IRK以及POLD等基因可能在甘蔗腋芽形成发育中发挥正调控作用,而DGK1PCaP1、LSD1等基因可能负调控甘蔗腋芽形成发育。

关键词: 甘蔗, 腋芽形成发育, 转录组测序, 代谢通路, 加权共表达网络分析

Abstract:

Objective The key metabolic pathways and regulatory genes of sugarcane axillary bud formation and development were explored to provide valuable genetic resources for the breeding of sugarcane varieties and the formulation of genetic improvement strategies. Method The tender, semi-large, young and mature axillary buds of ‘XTT22’ were selected as the material, and the growth points of stem apex were used as the control. First, transcriptome libraries of the four stages of axillary bud formation and development were obtained by RNA-seq. The DESeq2 software was used to screen differentially expressed genes (DEGs), as well as GO and KEGG functional enrichment analysis was carried out. Then real-time fluorescent quantitative PCR (RT-qPCR) was used to verify the reliability of transcriptome sequencing results. Finally, the core genes related to the formation and development of sugarcane axillary buds were excavated by weighted gene co-expression network analysis (WGCNA). Result A total of 62 630 DEGs were obtained during the formation and development of sugarcane axillary buds. KEGG enrichment analysis mainly concentrated in mannose-type O-glycan biosynthesis, indole alkaloid biosynthesis, brassinolide biosynthesis and other pathways. KEGG enrichment pathway network analysis showed that hormone signal transduction, cyanamide metabolism and phenylpropanoid biosynthesis are the core pathways of axillary bud formation and development, while β‍-alanine metabolism and nitrogen metabolism are the specific core pathways in the development of tender axillary buds. C-5 branched-chain dibasic acid metabolism, tryptophan metabolism and fatty acid progression pathway are the core enrichment pathways of young and mature axillary buds respectively. The RT-qPCR results of 9 DEGs showed similar expression patterns to those of RNA-seq results. The 20 core genes related to the formation and development of sugarcane axillary buds, including UBR7, IRK and POLD WGCNA analysis was identified. Conclusion During the formation and development of sugarcane axillary buds, mannose-type O-glycan, sucrose, starch and nitrogen are needed as the material and energy basis, and plant hormones and secondary metabolites are also needed to regulate the related growth and development process. UBR7, IRK and POLD genes may play a positive role in the formation and development of sugarcane axillary buds, while DGK1, PCaP1 and LSD1 may negatively regulate the formation and development of sugarcane axillary buds.

Key words: sugarcane (Saccharum spp.), axillary bud formation and development, RNA-seq, metabolic pathway, WGCNA