[1] Gao SL, Tong YY, Wen ZQ, et al. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system[J]. J Ind Microbiol Biotechnol. 2016, 43(8):1085-1093. [2] Cheng M, Jin XB, Mu L, et al. Combination of the clustered regularly interspaced short palindromic repeats(CRISPR)-associated 9 technique with the piggybac transposon system for mouse in utero electroporation to study cortical development[J]. J Neurosci Res, 2016, 94(9):814-824. [3] Bi YZ, Hua ZD, Liu XM, et al. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP[J]. Sci Rep, 2016, 6:31729. [4] Jiang WY, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature Biotechnology, 2013, 31(3):233-239. [5] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [6] Jinek M, Jiang F, Taylor DW, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J]. Science, 2014, 343(6176):1247997. [7] Nishimasu H, Ran FA, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5):935-949. [8] Sternberg SH, Redding S, Jinek M, et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9[J]. Nature, 2014, 507(7490):62-67. [9] Anders C, Niewoehner O, Duerst A, et al. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease[J]. Nature, 2014, 513(7519):569-573. [10] Jiang FG, Taylor DW, Chen JS, et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage[J]. Science, 2016, 351(6275):867-871. [11] Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 6:1262-1278. [12] Gratz SJ, Ukken FP, Rubinstein CD, et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila[J]. Genetics, 2014, 196(4):961-971. [13] Miyaoka Y, Berman JR, Cooper SB, et al. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing[J]. Sci Rep, 2016, 6:23549. [14] Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9[J]. Nature, 2016, 533(7601):125-129. [15] Ma YW, Chen W, Zhang X, et al. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein[J]. RNA Biology, 2016, 13(7):605-612. [16] Lin CL, Li HH, Hao MR, et al. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing of HSV-1 virus in human cells[J]. Sci Rep, 2016, 6:34531. [17] Chu VT, Weber T, Wefers B, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-inducedprecise gene editing in mammalian cells[J]. Nat Biotechnol, 2015, 33(5):543-548. [18] Lin S, Staahl BT, Alla RK, et al. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery[J]. Elife, 2014, 3:e04766. [19] Yang D, Scavuzzo MA, Chmielowiec J, et al. Enrichment of G2/M cell cyclephase in human pluripotent stemcells enhances HDR-mediated gene repair with customizable endonucleases[J]. Scientific Reports, 2016, 6:21264. [20] Richardson CD, Ray GJ, DeWitt MA, et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA[J]. Nature Biotechnology, 2016, 34(3):339-344. [21] Hendel A, Bak RO, Clark JT, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells[J]. Nature Biotechnology, 2015, 33(9):985-989. [22] Yu C, Liu YX, Ma TH, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells[J]. Cell Stem Cell, 2015, 16(2):142-147. [23] Nishida K, Arazoe T, Yachie N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305):1248. [24] Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424. [25] Xie KB, et al. Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops[J]. Mol Plant, 2014, 5:923-926. [26] Anders C, Bargsten K, Jinek M, et al. Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9[J]. Mol Cell, 2016, 61(6):895-902. [27] Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities[J]. Nature, 2015, 523(7561):481-485. [28] Chylinski K, Makarova KS, Charpentier E, et al. Classification and evolutionof type II CRISPR-Cas systems[J]. Nucleic Acids Res, 2014, 42(10):6091-6105. [29] Hirano H, Gootenberg JS, Horii T, et al. Structure and Engineering of Francisella novicida Cas9[J]. Cell, 2016, 5:950-961. [30] Feng Y, Chen C, Han YX, et al. Expanding CRISPR/Cas9 genome editing capacity in zebrafish using saCas9[J]. G3(Bethesda), 2016, 6(8):2517-2521. [31] Lee CM, Cradick TJ, Bao G, et al. The Neisseria meningitidis CR-ISPR-Cas9 system enables specific genome editing in mammalian cells[J]. Mol Ther, 2016, 24(3):645-54. [32] Li W, Bian X, et al. Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPR)of Streptococcus thermophilus St-I and its bacteriophage-insensitive mutants(BIM)derivatives[J]. Curr Microbiol, 2016, 73(3):393-400. [33] Glemzaite M, Balciunaite E, Karvelis T, et al. Targeted gene editing by transfection of in vitro reconstituted Streptococcus thermophilus Cas9 nuclease complex[J]. RNA Biol, 2015, 12(1):1-4. [34] Fonfara I, Le Rhun A, Chylinski K, et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems[J]. Nucleic Acids Res, 2014, 42(4):2577-2590. [35] Kleinstiver BP, Prew MS, Tsai SQ, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition[J]. Nat Biotechnol, 2015, 33(12):1293-1298. [36] Hirano H, Gootenberg JS, Horii T, et al. Structure and engineering of Francisella novicida Cas9[J]. Cell, 2016, 5:950-961. [37] Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299):557. [38] Chiang TW, Ie Sage C, Larrieu D, et al. CRISPR-Cas9(D10A)nickase-based genotypic and phenotypic screening to enhance genome editing[J]. Sci Rep, 2016, 6:24356. [39] Zhang B, Liu ZQ, Liu C, et al. Application of CRISPRi in Corynebacterium glutamicum for shikimic acid production[J]. Biotechnol Lett, 2016, 38(12):2153-2161. [40] Pan Y, Shen N, Jung-Klawitter S, et al. CRISPR RNA-guided FokI nucleases repair a PAH variant in a phenylketonuria model[J]. Sci Rep, 2016, 6:35794. [41] Terao M, Tamano M, Hara S, et al. Utilization of the CRISPR/Cas9 system for the efficient production of mutant mice using crRNA/tracrRNA with Cas9 nickase and FokI-dCas9[J]. Exp Anim, 2016, 65(3):275-283. [42] Slaymaker IM, et al. Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016, 351(6288):84-88. [43] Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature, 2016, 529(7587):490-495. [44] Cao J, Wu LZ, Zhang SM, et al. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting[J]. Nucleic Acids Res, 2016, 44(19):e149. [45] Davis KM, Pattanayak V, Thompson DB, et al, Small molecule-triggered Cas9 protein with improved genome-editing specificity[J]. Nat Chem Biol, 2015, 11(5):316-318. [46] Fu YF, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nature Biotechnology, 2014, 32(3):279-284. [47] Cho SW, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J]. Genome Res, 2014, 24(1):132-141. [48] Lee CM, Cradick TJ, Bao G. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells[J]. Mol Ther, 2016, 24(3):645-654. [49] Müller M, Lee CM, Gasiunas G, et al. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome [J]. Mol Ther, 2016, 24(3):636-644. [50] Kalebic N, Taverna E, Tavano S, et al. CRISPR/Cas9-induced disruption of gene expression in mouse embryonic brain and single neural stem cells in vivo[J]. EMBO Rep, 2016, 3:338-348. [51] Hara S, et al. Microinjection-based generation of mutant mice with a double mutation and a 0. 5 Mb deletion in their genome by the CR-ISPR/Cas9 system[J]. J Reprod Dev, 2016, 62(5):531-536. [52] Kim S, Kim D, Cho SW, et al. Highly efficient RNA guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins[J]. Genome Res, 2014, 6:1012-1019. [53] Liang PP, Xu YW, Zhang XY, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein Cell, 2015, 6(5):363-372. [54] Hashimoto M, Yamashita Y, Takemoto T. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse[J]. Dev Biol, 2016, 418(1):1-9. [55] Yang LH, Güell M, Niu D, et al. Genome-wide inactivation of porcine endogenous retroviruses(PERVs)[J]. Science, 2015, 350(6264):1101-1104. [56] Bialek JK, Dunay GA, Voges M, et al. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems[J]. PLoS One, 2016, 11(6):e0158294. [57] Zhu W, Xie K, Xu YJ, et al. CRISPR/Cas9 produces anti-hepatitis B virus effect in hepatoma cells and transgenic mouse[J]. Virus Res, 2016, 217:125-132. [58] Khatodia S, Bhatotia K, Passricha N, et al. The CRISPR/Cas genome-editing tool:application in improvement of crops[J]. Front Plant Sci, 2016, 7:506. [59] Bassuk AG, Zheng A, Li Y, et al. Precision Medicine:Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells[J]. Sci Rep, 2016, 6:19969. |