生物技术通报 ›› 2022, Vol. 38 ›› Issue (3): 164-172.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0446
丁亚群1(), 丁宁1, 谢深民1, 黄梦娜1, 张昱1, 张勤1,2, 姜力1()
收稿日期:
2021-04-07
出版日期:
2022-03-26
发布日期:
2022-04-06
作者简介:
丁亚群,女,硕士研究生,研究方向:动物分子遗传育种;E-mail: 基金资助:
DING Ya-qun1(), DING Ning1, XIE Shen-min1, HUANG Meng-na1, ZHANG Yu1, ZHANG Qin1,2, JIANG Li1()
Received:
2021-04-07
Published:
2022-03-26
Online:
2022-04-06
摘要:
尽管基于QTL定位和关联分析研究挖掘了许多奶牛产奶性状候选功能基因,然而仅有少数几个基因经过体内外的功能验证。本课题组前期全基因组关联分析(GWAS)研究结果表明Vps28基因与奶牛产奶性状表型显著相关,并在奶牛乳腺组织中特异性高表达。为了深入了解该基因对泌乳性状的作用和功能,本研究利用CRISPR/Cas9技术构建了Vps28基因敲除小鼠,对其进行体内功能研究。研究结果显示Vps28基因敲除纯合型小鼠(Vps28-/-)极可能导致胚胎早期死亡,故只获得杂合型基因敲除小鼠(Vps28+/-)。敲除小鼠模型构建成功后,检测乳腺组织和脾脏组织中Vps28基因mRNA和蛋白的表达,结果显示与野生型小鼠(Vps28+/+)相比,Vps28+/-杂合型小鼠Vps28的mRNA和蛋白表达量均显著下降。进一步对母鼠的泌乳量、乳房形态和血常规进行检测,发现Vps28敲除母鼠的泌乳量下降,乳头明显凹陷,且血常规中白细胞数量、中性粒细胞数量、淋巴细胞数量和中间细胞数量显著低于野生型小鼠,推测Vps28基因不但影响泌乳,而且影响相关免疫性状。
丁亚群, 丁宁, 谢深民, 黄梦娜, 张昱, 张勤, 姜力. Vps28基因敲除小鼠模型的构建及其对泌乳和免疫性状影响的研究[J]. 生物技术通报, 2022, 38(3): 164-172.
DING Ya-qun, DING Ning, XIE Shen-min, HUANG Meng-na, ZHANG Yu, ZHANG Qin, JIANG Li. Construction of Vps28 Knock-out Mice and Model Study of the Impact on Lactation and Immune Traits[J]. Biotechnology Bulletin, 2022, 38(3): 164-172.
sgRNA名称 sgRNA name | 序列 Primer sequence(5'-3') | PAM |
---|---|---|
5S2 | GGCCATATTG GTAGGAGGTG AGG | AGG |
3S2 | GACCTACTCG GGCAGGACCC TGG | TGG |
表1 sgRNA序列
Table 1 sgRNA sequence
sgRNA名称 sgRNA name | 序列 Primer sequence(5'-3') | PAM |
---|---|---|
5S2 | GGCCATATTG GTAGGAGGTG AGG | AGG |
3S2 | GACCTACTCG GGCAGGACCC TGG | TGG |
引物名称 Primer name | 序列 Primer sequence(5'-3') | 产物长度 Product size/bp |
---|---|---|
3025-Vps28-5S-OuttF1 | GGCTCTGCTTTCCAGGTCTCTTG | 920 |
3025-Vps28-3S-OuttR2 | GAGCAACTCACCACTGGCTGA- CTG | |
3025-Vps28-5S-intF1 | GACCACACTGCTACGTCCATCC | 521 |
3025-Vps28-5S-intR1 | GTGACAGCCACATGGTGTTTGC |
表2 引物序列
Table 2 Primer sequence
引物名称 Primer name | 序列 Primer sequence(5'-3') | 产物长度 Product size/bp |
---|---|---|
3025-Vps28-5S-OuttF1 | GGCTCTGCTTTCCAGGTCTCTTG | 920 |
3025-Vps28-3S-OuttR2 | GAGCAACTCACCACTGGCTGA- CTG | |
3025-Vps28-5S-intF1 | GACCACACTGCTACGTCCATCC | 521 |
3025-Vps28-5S-intR1 | GTGACAGCCACATGGTGTTTGC |
引物名称Primer name | 序列Primer sequence(5'-3') |
---|---|
Vps28-F1 | GCAGGATGTTCCACGGGATC |
Vps28-R1 | CTCCCGAGCATTCTTGTAGAGC |
GAPDH-F1 | GGTGCTGAGTATGTGGTGGA |
GAPDH-R1 | GGCATTGCTGACAATCTTGA |
表3 qPCR引物序列
Table 3 Sequences of qPCR primers
引物名称Primer name | 序列Primer sequence(5'-3') |
---|---|
Vps28-F1 | GCAGGATGTTCCACGGGATC |
Vps28-R1 | CTCCCGAGCATTCTTGTAGAGC |
GAPDH-F1 | GGTGCTGAGTATGTGGTGGA |
GAPDH-R1 | GGCATTGCTGACAATCTTGA |
图2 Vps28敲除小鼠F0代基因型鉴定 B6为阴性对照,是B6基因组DNA;N为空白对照,无模板的对照;marker条带:2 000 bp,1 000 bp,750 bp,500 bp,250 bp,100 bp
Fig. 2 Genotype identification of F0 generation of Vps28-knockout mice B6 is negative control,which is B6 genomic DNA. N is blank control and control without template. Marker band:2 000 bp,1 000 bp,750 bp,500 bp,250 bp,and 100 bp
图4 Vps28敲除小鼠F1代基因型鉴定 B6为阴性对照,是B6鼠基因组DNA;N为空白对照;Trans2K PlusII条带为:8 000 bp,5 000 bp,3 000 bp,2 000 bp,1 000 bp,750 bp,500 bp,250 bp,100 bp
Fig. 4 Genotype identification of Vps28-knockout mice in F1 generation B6 is negative control,which is the genomic DNA of B6 mice. N is blank control. The band of trans2K PlusII is:8 000 bp,5 000 bp,3 000 bp,2 000 bp,1 000 bp,750 bp,500 bp,250 bp,and 100 bp
图5 Vps28基因在脾脏和乳腺中的敲除效果 A:脾脏组织;B:乳腺组织
Fig. 5 mRNA and protein expresion of Vps28 in mouse spleen and mammary gland A:Spleen tissue. B:Mammary gland tissue. WT:wild type;KO:knockout. The same blelow
图7 Vps28基因敲除母鼠和野生型母鼠乳腺组织形态 A:野生型母鼠;B:Vps28基因敲除母鼠
Fig. 7 Structural morphology of mammary glands in WT-mice and Vps28-knockout mice A:WT mice. B:KO mice
[1] |
Katzmann DJ, Babst M, Emr SD. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I[J]. Cell, 2001, 106(2):145-155.
pmid: 11511343 |
[2] |
Hurley JH. ESCRT complexes and the biogenesis of multivesicular bodies[J]. Curr Opin Cell Biol, 2008, 20(1):4-11.
doi: 10.1016/j.ceb.2007.12.002 pmid: 18222686 |
[3] |
Giordano F, Giordano F, Simoes S, et al. The ocular albinism type 1(OA1)GPCR is ubiquitinated and its traffic requires endosomal sorting complex responsible for transport(ESCRT)function[J]. PNAS, 2011, 108(29):11906-11911.
doi: 10.1073/pnas.1103381108 URL |
[4] |
Cox LE, Ferraiuolo L, Goodall EF, et al. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis(ALS)[J]. PLoS One, 2010, 5(3):e9872.
doi: 10.1371/journal.pone.0009872 URL |
[5] |
Belly A, Bodon G, Blot B, et al. CHMP2B mutants linked to frontotemporal dementia impair maturation of dendritic spines[J]. J Cell Sci, 2010, 123(pt 17):2943-2954.
doi: 10.1242/jcs.068817 URL |
[6] |
Lee JA, Gao FB. Roles of ESCRT in autophagy-associated neurodegeneration[J]. Autophagy, 2008, 4(2):230-232.
doi: 10.4161/auto.5384 URL |
[7] |
Gingras MC, Kazan JM, Pause A. Role of ESCRT component HD-PTP/PTPN23 in cancer[J]. Biochem Soc Trans, 2017, 45(3):845-854.
doi: 10.1042/BST20160332 URL |
[8] |
Oh KB, Stanton MJ, West WW, et al. Tsg101 is upregulated in a subset of invasive human breast cancers and its targeted overexpression in transgenic mice reveals weak oncogenic properties for mammary cancer initiation[J]. Oncogene, 2007, 26(40):5950-5959.
pmid: 17369844 |
[9] |
Chu T, Sun J, Saksena S, et al. New component of ESCRT-I regulates endosomal sorting complex assembly[J]. J Cell Biol, 2006, 175(5):815-823.
doi: 10.1083/jcb.200608053 URL |
[10] |
Schmidt O, Teis D. The ESCRT machinery[J]. Curr Biol, 2012, 22(4):R116-R120.
doi: 10.1016/j.cub.2012.01.028 URL |
[11] |
Kostelansky MS, Schluter C, Tam YY, et al. Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer[J]. Cell, 2007, 129(3):485-498.
pmid: 17442384 |
[12] |
Kostelansky MS, Sun J, Lee S, et al. Structural and functional organization of the ESCRT-I trafficking complex[J]. Cell, 2006, 125(1):113-126.
doi: 10.1016/j.cell.2006.01.049 pmid: 16615894 |
[13] |
Sevrioukov EA, Moghrabi N, Kuhn M, et al. A mutation in dVps28 reveals a link between a subunit of the endosomal sorting complex required for transport-I complex and the actin cytoskeleton in Drosophila[J]. Mol Biol Cell, 2005, 16(5):2301-2312.
pmid: 15728719 |
[14] |
Slagsvold T, Aasland R, Hirano S, et al. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain[J]. J Biol Chem, 2005, 280(20):19600-19606.
doi: 10.1074/jbc.M501510200 pmid: 15755741 |
[15] |
Jiang L, Liu J, Sun D, et al. Genome wide association studies for milk production traits in Chinese Holstein population[J]. PLoS One, 2010, 5(10):e13661.
doi: 10.1371/journal.pone.0013661 URL |
[16] |
Jiang L, Liu X, Yang J, et al. Targeted resequencing of GWAS loci reveals novel genetic variants for milk production traits[J]. BMC Genomics, 2014, 15:1105.
doi: 10.1186/1471-2164-15-1105 pmid: 25510969 |
[17] |
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823.
doi: 10.1126/science.1231143 pmid: 23287718 |
[18] |
Saksena S, Sun J, Chu T, et al. ESCRTing proteins in the endocytic pathway[J]. Trends Biochem Sci, 2007, 32(12):561-573.
pmid: 17988873 |
[19] |
Ciechanover A. The ubiquitin-proteasome proteolytic pathway[J]. Cell, 1994, 79(1):13-21.
pmid: 7923371 |
[20] |
Bishop N, Horman A, Woodman P. Mammalian class E vps proteins recognize ubiquitin and act in the removal of endosomal protein-ubiquitin conjugates[J]. J Cell Biol, 2002, 157(1):91-101.
pmid: 11916981 |
[21] |
Bishop N, Woodman P. TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes[J]. J Biol Chem, 2001, 276(15):11735-11742.
doi: 10.1074/jbc.M009863200 pmid: 11134028 |
[22] |
Liu L, Zhang Q. Identification and functional analysis of candidate gene VPS28 for milk fat in bovine mammary epithelial cells[J]. Biochem Biophys Res Commun, 2019, 510(4):606-613.
doi: 10.1016/j.bbrc.2019.01.016 URL |
[23] |
Ruland J, Sirard C, Elia A, et al. p53 accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsg101[J]. PNAS, 2001, 98(4):1859-1864.
pmid: 11172041 |
[24] |
Wagner KU, Krempler A, Qi YY, et al. Tsg101 is essential for cell growth, proliferation, and cell survival of embryonic and adult tissues[J]. Mol Cell Biol, 2003, 23(1):150-162.
doi: 10.1128/MCB.23.1.150-162.2003 URL |
[25] |
Liu J, Wang Y, Cheng Y. The ESCRT-I components VPS28A and VPS28B are essential for auxin-mediated plant development[J]. Plant Journal, 2020, 104(6):1617-1634.
doi: 10.1111/tpj.v104.6 URL |
[26] | 梁新月, 张云云, 闫建设. 中性粒细胞——炎症反应中的双刃剑[J]. 自然杂志, 2019, 41(5):370-375. |
Liang XY, Zhang YY, Yan JS. Neutrophils:a double-edged sword in the inflammatory response[J]. Chin J Nat, 2019, 41(5):370-375. | |
[27] | 张宇婷, 王笑红, 李俊松, 等. 基于细胞/细胞外囊泡的药物递送系统研究进展[J]. 南京中医药大学学报, 2020, 36(5):736-745. |
Zhang YT, Wang XH, Li JS, et al. Research advances in drug delivery system based on cell or extracellular vesicles[J]. J Nanjing Univ Tradit Chin Med, 2020, 36(5):736-745. | |
[28] |
Cornet M, Gaillardin C, Richard ML. Deletions of the endocytic components VPS28 and VPS32 in Candida albicans lead to echinocandin and azole hypersensitivity[J]. Antimicrob Agents Chemother, 2006, 50(10):3492-3495.
doi: 10.1128/AAC.00391-06 URL |
[29] | Dionisio-Vicuña MN, Gutiérrez-López TY, Adame-García SR, et al. VPS28, an ESCRT-I protein, regulates mitotic spindle organization via Gβγ, EG5 and TPX2[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(7):1012-1022. |
[1] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[2] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[3] | 施炜涛, 姚春鹏, 魏文康, 王蕾, 房元杰, 仝钰洁, 马晓姣, 蒋文, 张晓爱, 邵伟. 利用CRISPR/Cas9技术构建MDH2敲除细胞株及抗呕吐毒素效应研究[J]. 生物技术通报, 2023, 39(7): 307-315. |
[4] | 刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91. |
[5] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
[6] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[7] | 王兵, 赵会纳, 余婧, 陈杰, 骆梅, 雷波. 利用CRISPR/Cas9系统研究REVOLUTA参与烟草叶芽发育的调控[J]. 生物技术通报, 2023, 39(10): 197-208. |
[8] | 李双喜, 华进联. 抗猪繁殖与呼吸障碍综合征基因编辑猪研究进展[J]. 生物技术通报, 2023, 39(10): 50-57. |
[9] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[10] | 刘静静, 刘晓蕊, 李琳, 王盈, 杨海元, 戴一凡. 利用CRISPR/Cas9技术建立OXTR基因敲除猪胎儿成纤维细胞系[J]. 生物技术通报, 2022, 38(6): 272-278. |
[11] | Olalekan Amoo, 胡利民, 翟云孤, 范楚川, 周永明. 利用基因编辑技术研究BRANCHED1参与油菜分枝过程的调控[J]. 生物技术通报, 2022, 38(4): 97-105. |
[12] | 燕炯, 冯晨毅, 高学坤, 许祥, 杨佳敏, 陈朝阳. 基于CRISPR/Cas9技术构建Plin1基因敲除小鼠模型及表型分析[J]. 生物技术通报, 2022, 38(3): 173-180. |
[13] | 钟菁, 孙玲玲, 张姝, 蒙园, 支怡飞, 涂黎晴, 徐天鹏, 濮黎萍, 陆阳清. 应用CRISPR/Cas9技术敲除Mda5基因对新城疫及传染性法氏囊病毒复制的影响[J]. 生物技术通报, 2022, 38(11): 90-96. |
[14] | 宗梅, 韩硕, 郭宁, 段蒙蒙, 刘凡, 王桂香. 利用真空渗透和CRISPR/Cas9系统获得非转基因菜薹突变体[J]. 生物技术通报, 2022, 38(10): 159-163. |
[15] | 王海杰, 王成稷, 郭洋, 王云, 陈艳娟, 梁敏, 王珏, 龚慧, 沈如凌. 基于CRSIPR/Cas9技术构建凝血因子8基因敲除小鼠模型及表型验证[J]. 生物技术通报, 2022, 38(10): 273-280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||