生物技术通报 ›› 2022, Vol. 38 ›› Issue (12): 47-57.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0236
收稿日期:
2022-02-26
出版日期:
2022-12-26
发布日期:
2022-12-29
作者简介:
姚宇,博士研究生,研究方向:中药资源鉴定;E-mail:基金资助:
YAO Yu(), GU Jia-jun, SUN Chao, SHEN Guo-an(), GUO Bao-lin()
Received:
2022-02-26
Published:
2022-12-26
Online:
2022-12-29
摘要:
植物类黄酮化合物是一类重要的天然产物,通常以糖苷的形式存在。尿苷二磷酸糖基转移酶(uridine diphosphate glycosyltransferase,UGT)能够对类黄酮进行糖基化修饰,形成种类丰富的类黄酮糖苷,是许多药用植物中的类黄酮药用活性成分。近年来,随着越来越多的植物基因组被解析,大量参与类黄酮合成的糖基转移酶得以鉴定。本文首先简述了植物UGT的结构特征和家族分类,然后详细综述了植物类黄酮UGT的研究进展,对处于不同家族中的植物类黄酮UGT的修饰位点特异性、以及糖供体和糖受体的特异性进行了全面的归纳和总结,以期为植物类黄酮UGT的结构与功能相关性研究及新植物类黄酮UGT的发掘与鉴定研究奠定基础。
姚宇, 顾佳珺, 孙超, 申国安, 郭宝林. 植物类黄酮UDP-糖基转移酶研究进展[J]. 生物技术通报, 2022, 38(12): 47-57.
YAO Yu, GU Jia-jun, SUN Chao, SHEN Guo-an, GUO Bao-lin. Advances in Plant Flavonoids UDP-glycosyltransferase[J]. Biotechnology Bulletin, 2022, 38(12): 47-57.
组 Group | UGT家族 UGT family | 催化底物 Substrate |
---|---|---|
A | 79,91,94 | 类黄酮、皂苷和细胞分裂素 |
B | 89,96 | 油菜素甾醇、萜类、类黄酮和苯甲酸盐等 |
C | 90,97 | |
D | 73,98,99,702,703,704,705,729 | |
E | 70,71,72,88,706,707 | ABA、木纤维素、萜类化合物、苯甲酸盐和类黄酮化合物 |
F | 78,77,714 | 类黄酮 |
G | 85 | 萜类和玉米素 |
H | 76,710 | 生长素、邻氨基苯甲酸盐、花青素、苯丙素类和油菜素甾醇 |
I | 83,712 | |
J | 87 | |
N | 82 | |
K | 86 | |
L | 74,75,84 | 类黄酮、苯丙烷和生长素吲哚乙酸 |
M | 92 | 细胞分裂素 |
O | 93,722 | 植物激素和细胞分裂素 |
P | 709,720 | 萜类 |
Q | 95,716 | 类黄酮 |
R | 708 |
表1 植物UGT的底物识别特异性
Table 1 Substrate specificity of plant UGT
组 Group | UGT家族 UGT family | 催化底物 Substrate |
---|---|---|
A | 79,91,94 | 类黄酮、皂苷和细胞分裂素 |
B | 89,96 | 油菜素甾醇、萜类、类黄酮和苯甲酸盐等 |
C | 90,97 | |
D | 73,98,99,702,703,704,705,729 | |
E | 70,71,72,88,706,707 | ABA、木纤维素、萜类化合物、苯甲酸盐和类黄酮化合物 |
F | 78,77,714 | 类黄酮 |
G | 85 | 萜类和玉米素 |
H | 76,710 | 生长素、邻氨基苯甲酸盐、花青素、苯丙素类和油菜素甾醇 |
I | 83,712 | |
J | 87 | |
N | 82 | |
K | 86 | |
L | 74,75,84 | 类黄酮、苯丙烷和生长素吲哚乙酸 |
M | 92 | 细胞分裂素 |
O | 93,722 | 植物激素和细胞分裂素 |
P | 709,720 | 萜类 |
Q | 95,716 | 类黄酮 |
R | 708 |
图2 植物类黄酮UGT和拟南芥UGT系统进化树 3GT:3-O-糖基转移酶;5GT:5-O-糖基转移酶;7GT:7-O-糖基转移酶;3'GT:3'-O-糖基转移酶;GGT:糖基化附着于黄酮苷元的糖基的糖基转移酶。3'GlcT:3'-O-葡糖基转移酶;4'GlcT:4'-O-葡糖基转移酶;3GalT:3-O-半乳糖基转移酶;3RhaT:3-O-鼠李糖基转移酶;5GlcT:5-O-葡糖基转移酶;7GlcT:7-O-葡糖基转移酶;7GAT,7-O-葡糖醛酸转移酶;7RhaT:7-O-葡糖基转移酶;G6''Gt:6''-O-葡糖基转移酶;G2''Gt,G2''GlcT:2''-O-葡糖基转移酶;G6''Rt,G2''RhaT:6''-O-鼠李糖基转移酶
Fig. 2 Phylogenetic analysis of Arabidopsis UGT family and plant flavonoid UGT 3GT:3-O-glycosyltransferase;5GT:5-O-glycosyltransferase;7GT:7-O-glycosyltransferase;3'GT:3'-O-glycosyltransferase;4'GT,4'-O-glycosyltransferase;GGT:glycoside glycosyltransferases;3'GlcT:3'-O-glucosyltransferase;4'GlcT:4'-O-glucosyltransferase;3GalT:3-O-galactosyltransferase;3RhaT:3-O-rhamnosyltransferase;5GlcT:5-O-glucosyltransferase;7GlcT:7-O-glucosyltransferase;7GAT:7-O-glucuronic acid transferase;7RhaT:7-O- rhamnosyltransferase;G6”Gt:6”-O-glucosyltransferase;G2”Gt,G2”GlcT:2”-O-glucosyltransferase;G6”Rt,G2”RhaT:6”-O-rhamnosyltransferase Am:Antirrhinum majus;At:Arabidopsis thaliana;Cm:Citrus maxima;Cp,Citrus paradisi;Cs:Crocus sativus;Cs:Camellia sinensis;Fa:Fragaria× ananassa;Gb:Ginkgo biloba;Gm:Glycine max;Hp:Hieracium pilosella;Ip,Ipomoea purpurea;Lv,Linaria vulgaris;Nm:Nemophila menziesii;Pf:Perilla frutescens;Pg:Punica granatum;Ph:Petunia hybrida;Pl:Pueraria lobata;Sl:Sesamum indicum;Va:Vitis amurensis;Vv:Vitis vinifera
组Group | UGT家族UGT family | 主要修饰位点Modification site |
---|---|---|
A | 79,95,716 | GGTs |
B | 89 | 7-OH |
C | 90 | 4'-OH |
D | 73 | 7-OH |
E | 88,70,71 | 7-OH(唇形目Lamiales) |
F | 78 | 3-OH |
L | 75,84 | 5-OH |
表2 识别植物类黄酮O-位的UGT对底物修饰位点的选择性
Table 2 Specificity of UGT identifying flavonoid O-site to the modification sites of substrates in plants
组Group | UGT家族UGT family | 主要修饰位点Modification site |
---|---|---|
A | 79,95,716 | GGTs |
B | 89 | 7-OH |
C | 90 | 4'-OH |
D | 73 | 7-OH |
E | 88,70,71 | 7-OH(唇形目Lamiales) |
F | 78 | 3-OH |
L | 75,84 | 5-OH |
组 Group | UGT家族 UGT family | 基因ID Gene ID | 物种 Species | 拉丁名 Latin name | 基因登录号 Accession No. | 修饰位点 Modification site | 底物 Substrate |
---|---|---|---|---|---|---|---|
A | 79 | PhA3RhaT[ | 矮牵牛 | Petunia hybrida | Q43716.1 | 3-OH | 花青素 |
A | 79 | AtUGT79B2[ | 拟南芥 | Arabidopsis thaliana | Q9T080.1 | 3-OH | 花青素 |
A | 95 | GbUGT716A1[ | 银杏 | Ginkgo biloba | ASK39400.1 | 3-OH和7-OH为主,也能修饰3'-OH和4'-OH | 黄酮、黄酮醇、异黄酮、没食子和没食子酸黄烷醇 |
A | 95 | PgUGT95B2[ | 石榴 | Punica granatum | AZB52139.1 | 4'-OH | 黄酮醇和黄酮 |
A | 95 | HpUGT95A1[ | 绿毛山柳菊 | Hieracium pilosella | ACB56927.1 | 3'-OH | 黄酮 |
C | 90 | HpUGT90A7[ | 绿毛山柳菊 | Hieracium pilosella | EU561019.1 | 4'-OH为主,也能修饰7-OH | 黄酮醇 |
E | 71 | FaGT6[ | 草莓 | Fragaria x ananassa | ABB92748.1 | 3-OH为主,也能修饰7-OH、4'-OH和3'-OH | 黄酮醇为主,也能催化羟基香豆素和萘酚 |
E | 70 | CsUGT707B1[ | 红花 | Crocus sativus | CCG85331.1 | 2''-OH | 黄酮醇 |
E | 73 | FaGT7[ | 草莓 | Fragaria x ananassa | ABB92749.1 | 3-OH和4'-OH为主,也能修饰7-OH和3'-OH | 黄酮醇、羟基香豆素和萘酚 |
E | 88 | GmUGT88E19[ | 大豆 | Glycine max | XP_003533968 | 3'-OH和7-OH | 异黄酮 |
L | 84 | NmF4' G7GT[ | 粉蝶花 | Nemophila menziesii | BBA68563.1 | 4'-OH和7-OH | 黄酮 |
表3 修饰位点选择不符合所在组规律的植物类黄酮UGT
Table 3 Plant flavonoids UGT with special modified site
组 Group | UGT家族 UGT family | 基因ID Gene ID | 物种 Species | 拉丁名 Latin name | 基因登录号 Accession No. | 修饰位点 Modification site | 底物 Substrate |
---|---|---|---|---|---|---|---|
A | 79 | PhA3RhaT[ | 矮牵牛 | Petunia hybrida | Q43716.1 | 3-OH | 花青素 |
A | 79 | AtUGT79B2[ | 拟南芥 | Arabidopsis thaliana | Q9T080.1 | 3-OH | 花青素 |
A | 95 | GbUGT716A1[ | 银杏 | Ginkgo biloba | ASK39400.1 | 3-OH和7-OH为主,也能修饰3'-OH和4'-OH | 黄酮、黄酮醇、异黄酮、没食子和没食子酸黄烷醇 |
A | 95 | PgUGT95B2[ | 石榴 | Punica granatum | AZB52139.1 | 4'-OH | 黄酮醇和黄酮 |
A | 95 | HpUGT95A1[ | 绿毛山柳菊 | Hieracium pilosella | ACB56927.1 | 3'-OH | 黄酮 |
C | 90 | HpUGT90A7[ | 绿毛山柳菊 | Hieracium pilosella | EU561019.1 | 4'-OH为主,也能修饰7-OH | 黄酮醇 |
E | 71 | FaGT6[ | 草莓 | Fragaria x ananassa | ABB92748.1 | 3-OH为主,也能修饰7-OH、4'-OH和3'-OH | 黄酮醇为主,也能催化羟基香豆素和萘酚 |
E | 70 | CsUGT707B1[ | 红花 | Crocus sativus | CCG85331.1 | 2''-OH | 黄酮醇 |
E | 73 | FaGT7[ | 草莓 | Fragaria x ananassa | ABB92749.1 | 3-OH和4'-OH为主,也能修饰7-OH和3'-OH | 黄酮醇、羟基香豆素和萘酚 |
E | 88 | GmUGT88E19[ | 大豆 | Glycine max | XP_003533968 | 3'-OH和7-OH | 异黄酮 |
L | 84 | NmF4' G7GT[ | 粉蝶花 | Nemophila menziesii | BBA68563.1 | 4'-OH和7-OH | 黄酮 |
[1] |
Buer CS, Imin N, Djordjevic MA. Flavonoids:new roles for old molecules[J]. J Integr Plant Biol, 2010, 52(1):98-111.
doi: 10.1111/j.1744-7909.2010.00905.x URL |
[2] |
Harborne JB, Williams CA. Advances in flavonoid research since 1992[J]. Phytochemistry, 2000, 55(6):481-504.
pmid: 11130659 |
[3] |
Dobrzynska M, Napierala M, Florek E. Flavonoid nanoparticles:a promising approach for cancer therapy[J]. Biomolecules, 2020, 10(9):1268.
doi: 10.3390/biom10091268 URL |
[4] |
Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents[J]. Proc Nutr Soc, 2010, 69(3):273-278.
doi: 10.1017/S002966511000162X pmid: 20569521 |
[5] | Xiao JB. Dietary flavonoid aglycones and their glycosides:which show better biological significance?[J]. Crit Rev Food Sci Nutr, 2017, 57(9):1874-1905. |
[6] |
Yonekura-Sakakibara K, Hanada K. An evolutionary view of functional diversity in family 1 glycosyltransferases[J]. Plant J, 2011, 66(1):182-193.
doi: 10.1111/j.1365-313X.2011.04493.x URL |
[7] | Ross J, Li Y, Lim E, et al. Higher plant glycosyltransferases[J]. Genome Biol, 2001, 2(2): REVIEWS3004. |
[8] |
Vogt T, Jones P. Glycosyltransferases in plant natural product synthesis:characterization of a supergene family[J]. Trends Plant Sci, 2000, 5(9):380-386.
pmid: 10973093 |
[9] |
Shao H, He XZ, Achnine L, et al. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula[J]. Plant Cell, 2005, 17(11):3141-3154.
pmid: 16214900 |
[10] |
Maharjan R, Fukuda Y, Shimomura N, et al. An ambidextrous polyphenol glycosyltransferase PaGT2 from Phytolacca americana[J]. Biochemistry, 2020, 59(27):2551-2561.
doi: 10.1021/acs.biochem.0c00224 pmid: 32525309 |
[11] |
Liu MZ, Wang DD, Li Y, et al. Crystal structures of the C-glycosyltransferase UGT708C1 from buckwheat provide insights into the mechanism of C-glycosylation[J]. Plant Cell, 2020, 32(9):2917-2931.
doi: 10.1105/tpc.20.00002 URL |
[12] |
Hsu TM, Welner DH, Russ ZN, et al. Employing a biochemical protecting group for a sustainable indigo dyeing strategy[J]. Nat Chem Biol, 2018, 14(3):256-261.
doi: 10.1038/nchembio.2552 pmid: 29309053 |
[13] |
Wetterhorn KM, Newmister SA, Caniza RK, et al. Crystal structure of Os79(Os04g0206600)from Oryza sativa:a UDP-glucosyltransferase involved in the detoxification of deoxynivalenol[J]. Biochemistry, 2016, 55(44):6175-6186.
pmid: 27715009 |
[14] |
Gloster TM. Advances in understanding glycosyltransferases from a structural perspective[J]. Curr Opin Struct Biol, 2014, 28:131-141.
doi: 10.1016/j.sbi.2014.08.012 URL |
[15] |
Bowles D, Lim EK, Poppenberger B, et al. Glycosyltransferases of lipophilic small molecules[J]. Annu Rev Plant Biol, 2006, 57:567-597.
pmid: 16669774 |
[16] |
Lairson LL, Henrissat B, Davies GJ, et al. Glycosyltransferases:structures, functions, and mechanisms[J]. Annu Rev Biochem, 2008, 77:521-555.
doi: 10.1146/annurev.biochem.76.061005.092322 pmid: 18518825 |
[17] |
McIntosh CA, Owens DK. Advances in flavonoid glycosyltransferase research:integrating recent findings with long-term citrus studies[J]. Phytochem Rev, 2016, 15(6):1075-1091.
doi: 10.1007/s11101-016-9460-6 URL |
[18] |
Wilson AE, Tian L. Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism[J]. Plant J, 2019, 100(6):1273-1288.
doi: 10.1111/tpj.14514 URL |
[19] |
Kawai Y, Ono E, Mizutani M. Expansion of specialized metabolism-related superfamily genes via whole genome duplications during angiosperm evolution[J]. Plant Biotechnol, 2014, 31(5):579-584.
doi: 10.5511/plantbiotechnology.14.0901a URL |
[20] |
Caputi L, Malnoy M, Goremykin V, et al. A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land[J]. Plant J, 2012, 69(6):1030-1042.
doi: 10.1111/j.1365-313X.2011.04853.x URL |
[21] |
Zhang F, Guo H, Huang JC, et al. A UV-B-responsive glycosyltransferase, OsUGT706C2, modulates flavonoid metabolism in rice[J]. Sci China Life Sci, 2020, 63(7):1037-1052.
doi: 10.1007/s11427-019-1604-3 pmid: 32112268 |
[22] |
Trapero A, Ahrazem O, Rubio-Moraga A, et al. Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus[J]. Plant Physiol, 2012, 159(4):1335-1354.
doi: 10.1104/pp.112.198069 pmid: 22649274 |
[23] |
Knoch E, Sugawara S, Mori T, et al. UGT79B31 is responsible for the final modification step of pollen-specific flavonoid biosynthesis in Petunia hybrida[J]. Planta, 2018, 247(4):779-790.
doi: 10.1007/s00425-017-2822-5 pmid: 29214446 |
[24] |
Li P, Li YJ, Zhang FJ, et al. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation[J]. Plant J, 2017, 89(1):85-103.
doi: 10.1111/tpj.13324 URL |
[25] |
Casas MI, Falcone-Ferreyra ML, Jiang N, et al. Identification and characterization of maize salmon silks genes involved in insecticidal maysin biosynthesis[J]. Plant Cell, 2016, 28(6):1297-1309.
doi: 10.1105/tpc.16.00003 URL |
[26] |
Jung SC, Kim W, Park SC, et al. Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd[J]. Plant Cell Physiol, 2014, 55(12):2177-2188.
doi: 10.1093/pcp/pcu147 URL |
[27] | Wu BP, Gao LX, Gao J, et al. Genome-wide identification, expression patterns, and functional analysis of UDP glycosyltransferase family in peach(Prunus persica L. batsch)[J]. Front Plant Sci, 2017, 8:389. |
[28] |
Irmisch S, Jancsik S, Man Saint Yuen M, et al. Complete biosynthesis of the anti-diabetic plant metabolite montbretin A[J]. Plant Physiol, 2020, 184(1):97-109.
doi: 10.1104/pp.20.00522 pmid: 32647038 |
[29] |
Wilson AE, Wu S, Tian L. PgUGT95B2 preferentially metabolizes flavones/flavonols and has evolved independently from flavone/flavonol UGTs identified in Arabidopsis thaliana[J]. Phytochemistry, 2019, 157:184-193.
doi: S0031-9422(18)30304-2 pmid: 30419412 |
[30] |
Nagatomo Y, Usui S, Ito T, et al. Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat)cotyledon[J]. Plant J, 2014, 80(3):437-448.
doi: 10.1111/tpj.12645 URL |
[31] |
Hofer B. Recent developments in the enzymatic O-glycosylation of flavonoids[J]. Appl Microbiol Biotechnol, 2016, 100(10):4269-4281.
doi: 10.1007/s00253-016-7465-0 pmid: 27029191 |
[32] |
Gachon CMM, Langlois-Meurinne M, Saindrenan P. Plant secondary metabolism glycosyltransferases:the emerging functional analysis[J]. Trends Plant Sci, 2005, 10(11):542-549.
doi: 10.1016/j.tplants.2005.09.007 URL |
[33] |
Rojas Rodas F, Rodriguez TO, Murai Y, et al. Linkage mapping, molecular cloning and functional analysis of soybean gene Fg2 encoding flavonol 3-O-glucoside(1→6)rhamnosyltransferase[J]. Plant Mol Biol, 2014, 84(3):287-300.
doi: 10.1007/s11103-013-0133-1 URL |
[34] |
Di SK, Yan F, Rodas FR, et al. Linkage mapping, molecular cloning and functional analysis of soybean gene Fg3 encoding flavonol 3-O-glucoside(1→2)glucosyltransferase[J]. BMC Plant Biol, 2015, 15:126.
doi: 10.1186/s12870-015-0504-7 URL |
[35] |
Rojas Rodas F, Di SK, Murai Y, et al. Cloning and characterization of soybean gene Fg1 encoding flavonol 3-O-glucoside/galactoside(1→6)glucosyltransferase[J]. Plant Mol Biol, 2016, 92(4/5):445-456.
doi: 10.1007/s11103-016-0523-2 URL |
[36] |
Masada S, Terasaka K, Oguchi Y, et al. Functional and structural characterization of a flavonoid glucoside 1, 6-glucosyltransferase from Catharanthus roseus[J]. Plant Cell Physiol, 2009, 50(8):1401-1415.
doi: 10.1093/pcp/pcp088 URL |
[37] |
Yonekura-Sakakibara K, Nakabayashi R, Sugawara S, et al. A flavonoid 3-O-glucoside:2''-O-glucosyltransferase responsible for terminal modification of pollen-specific flavonols in Arabidopsis thaliana[J]. Plant J, 2014, 79(5):769-782.
doi: 10.1111/tpj.12580 URL |
[38] |
Morita Y, Hoshino A, Kikuchi Y, et al. Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose:anthocyanidin 3-O-glucoside-2''-O-glucosyltransferase, due to 4-bp insertions in the gene[J]. Plant J, 2005, 42(3):353-363.
pmid: 15842621 |
[39] |
Frydman A, Weisshaus O, Bar-Peled M, et al. Citrus fruit bitter flavors:isolation and functional characterization of the gene Cm1, 2RhaT encoding a 1, 2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus[J]. Plant J, 2004, 40(1):88-100.
pmid: 15361143 |
[40] |
Kroon J, Souer E, de Graaff A, et al. Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida:characterization of insertion sequences in two mutant alleles[J]. Plant J, 1994, 5(1):69-80.
pmid: 8130799 |
[41] |
Witte S, Moco S, Vervoort J, et al. Recombinant expression and functional characterisation of regiospecific flavonoid glucosyltransferases from Hieracium pilosella L[J]. Planta, 2009, 229(5):1135-1146.
doi: 10.1007/s00425-009-0902-x pmid: 19238428 |
[42] |
Su XJ, Shen GA, Di SK, et al. Characterization of UGT716A1 as a multi-substrate UDP:flavonoid glucosyltransferase gene in Ginkgo biloba[J]. Front Plant Sci, 2017, 8:2085.
doi: 10.3389/fpls.2017.02085 URL |
[43] |
Yonekura-Sakakibara K, Tohge T, Niida R, et al. Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcriptome coexpression analysis and reverse genetics[J]. J Biol Chem, 2007, 282(20):14932-14941.
doi: 10.1074/jbc.M611498200 pmid: 17314094 |
[44] |
Jones P, Messner B, Nakajima JI, et al. UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana[J]. J Biol Chem, 2003, 278(45):43910-43918.
doi: 10.1074/jbc.M303523200 pmid: 12900416 |
[45] |
Noguchi A, Horikawa M, Fukui Y, et al. Local differentiation of sugar donor specificity of flavonoid glycosyltransferase in Lamiales[J]. Plant Cell, 2009, 21(5):1556-1572.
doi: 10.1105/tpc.108.063826 pmid: 19454730 |
[46] |
Yin QG, Shen GA, Di SK, et al. Genome-wide identification and functional characterization of UDP-glucosyltransferase genes involved in flavonoid biosynthesis in Glycine max[J]. Plant Cell Physiol, 2017, 58(9):1558-1572.
doi: 10.1093/pcp/pcx081 pmid: 28633497 |
[47] |
Griesser M, Vitzthum F, Fink B, et al. Multi-substrate flavonol O-glucosyltransferases from strawberry(Fragaria × ananassa)achene and receptacle[J]. J Exp Bot, 2008, 59(10):2611-2625.
doi: 10.1093/jxb/ern117 pmid: 18487633 |
[48] |
Okitsu N, Matsui K, Horikawa M, et al. Identification and characterization of novel Nemophila menziesii flavone glucosyltransferases that catalyze biosynthesis of flavone 7, 4'-O-diglucoside, a key component of blue metalloanthocyanins[J]. Plant Cell Physiol, 2018, 59(10):2075-2085.
doi: 10.1093/pcp/pcy129 pmid: 29986079 |
[49] |
Ono E, Fukuchi-Mizutani M, Nakamura N, et al. Yellow flowers generated by expression of the aurone biosynthetic pathway[J]. Proc Natl Acad Sci USA, 2006, 103(29):11075-11080.
doi: 10.1073/pnas.0604246103 URL |
[50] | Ono E, Nakayama T. Molecular breeding of novel yellow flowers by engineering the aurone biosynthetic pathway[J]. Transgen Plant J, 2007, 1(1):66-80. |
[51] |
Li J, Li ZB, Li CF, et al. Molecular cloning and characterization of an isoflavone 7-O-glucosyltransferase from Pueraria Lobata[J]. Plant Cell Rep, 2014, 33(7):1173-1185.
doi: 10.1007/s00299-014-1606-7 pmid: 24700248 |
[52] |
Tohge T, Nishiyama Y, Hirai MY, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor[J]. Plant J, 2005, 42(2):218-235.
pmid: 15807784 |
[53] |
Yonekura-Sakakibara K, Tohge T, Matsuda F, et al. Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis[J]. Plant Cell, 2008, 20(8):2160-2176.
doi: 10.1105/tpc.108.058040 pmid: 18757557 |
[54] |
Yin RH, Messner B, Faus-Kessler T, et al. Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation[J]. J Exp Bot, 2012, 63(7):2465-2478.
doi: 10.1093/jxb/err416 pmid: 22249996 |
[55] |
Miller KD, Guyon V, Evans JN, et al. Purification, cloning, and heterologous expression of a catalytically efficient flavonol 3-O-galactosyltransferase expressed in the male gametophyte of Petunia hybrida[J]. J Biol Chem, 1999, 274(48):34011-34019.
doi: 10.1074/jbc.274.48.34011 pmid: 10567367 |
[56] |
Devaiah SP, Owens DK, Sibhatu MB, et al. Identification, recombinant expression, and biochemical analysis of putative secondary product glucosyltransferases from Citrus paradisi[J]. J Agric Food Chem, 2016, 64(9):1957-1969.
doi: 10.1021/acs.jafc.5b05430 URL |
[57] | Birchfield AS, McIntosh CA. The effect of recombinant tags on Citrus paradisi flavonol-specific 3-O glucosyltransferase activity[J]. Plants(Basel), 2020, 9(3):402. |
[58] |
Zhao MY, Jin JY, Gao T, et al. Glucosyltransferase CsUGT78A14 regulates flavonols accumulation and reactive oxygen species scavenging in response to cold stress in Camellia sinensis[J]. Front Plant Sci, 2019, 10:1675.
doi: 10.3389/fpls.2019.01675 pmid: 31929783 |
[59] |
He XQ, Huang RH, Liu LP, et al. CsUGT78A15 catalyzes the anthocyanidin 3-O-galactoside biosynthesis in tea plants[J]. Plant Physiol Biochem, 2021, 166:738-749.
doi: 10.1016/j.plaphy.2021.06.029 URL |
[60] |
Ono E, Homma Y, Horikawa M, et al. Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines(Vitis vinifera)[J]. Plant Cell, 2010, 22(8):2856-2871.
doi: 10.1105/tpc.110.074625 URL |
[61] |
He F, Chen WK, Yu KJ, et al. Molecular and biochemical characterization of the UDP-glucose:anthocyanin 5-O-glucosyltransferase from Vitis amurensis[J]. Phytochemistry, 2015, 117:363-372.
doi: 10.1016/j.phytochem.2015.06.023 URL |
[62] |
Dai LH, Hu YM, Chen CC, et al. Flavonoid C-glycosyltransferases:function, evolutionary relationship, catalytic mechanism and protein engineering[J]. Chembioeng Rev, 2021, 8(1):15-26.
doi: 10.1002/cben.202000009 URL |
[63] |
Tegl G, Nidetzky B. Leloir glycosyltransferases of natural product C-glycosylation:structure, mechanism and specificity[J]. Biochem Soc Trans, 2020, 48(4):1583-1598.
doi: 10.1042/BST20191140 URL |
[64] |
Mashima K, Hatano M, Suzuki H, et al. Identification and characterization of apigenin 6-C-glucosyltransferase involved in biosynthesis of isosaponarin in wasabi(Eutrema japonicum)[J]. Plant Cell Physiol, 2019, 60(12):2733-2743.
doi: 10.1093/pcp/pcz164 pmid: 31418788 |
[65] |
Ren ZY, Ji XY, Jiao ZB, et al. Functional analysis of a novel C-glycosyltransferase in the orchid Dendrobium catenatum[J]. Hortic Res, 2020, 7:111.
doi: 10.1038/s41438-020-0330-4 URL |
[66] |
He JB, Zhao P, Hu ZM, et al. Molecular and structural characterization of a promiscuous C-glycosyltransferase from Trollius chinensis[J]. Angew Chem Int Ed Engl, 2019, 58(33):11513-11520.
doi: 10.1002/anie.201905505 URL |
[67] |
Wang X, Li CF, Zhou C, et al. Molecular characterization of the C-glucosylation for puerarin biosynthesis in Pueraria Lobata[J]. Plant J, 2017, 90(3):535-546.
doi: 10.1111/tpj.13510 URL |
[68] |
He XZ, Blount JW, Ge SJ, et al. A genomic approach to isoflavone biosynthesis in kudzu(Pueraria Lobata)[J]. Planta, 2011, 233(4):843-855.
doi: 10.1007/s00425-010-1344-1 URL |
[1] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[2] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[3] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[4] | 王玲, 卓燊, 付学森, 刘紫璇, 刘笑蓉, 王志辉, 周日宝, 刘湘丹. 莲生物碱生物合成途径及相关基因研究进展[J]. 生物技术通报, 2023, 39(7): 56-66. |
[5] | 韩华蕊, 杨宇琭, 门艺涵, 韩尚玲, 韩渊怀, 霍轶琼, 侯思宇. 基于代谢组学研究谷子SiYABBYs参与花发育过程中鼠李糖苷的生物合成[J]. 生物技术通报, 2023, 39(6): 189-198. |
[6] | 李敬蕊, 王育博, 解紫薇, 李畅, 吴晓蕾, 宫彬彬, 高洪波. 甜瓜PIN基因家族的鉴定及高温胁迫表达分析[J]. 生物技术通报, 2023, 39(5): 192-204. |
[7] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[8] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[9] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
[10] | 马芳芳, 刘冠闻, 庞冰, 蒋春美, 师俊玲. 强化细胞外排提高工程菌类黄酮产量的策略[J]. 生物技术通报, 2023, 39(5): 63-76. |
[11] | 郁慧丽, 李爱涛. 细胞色素P450酶在香精香料绿色生物合成中的应用[J]. 生物技术通报, 2023, 39(4): 24-37. |
[12] | 吕宇婧, 吴丹丹, 孔春艳, 杨宇, 龚明. 小桐子XTH基因家族和与之互作的miRNAs的全基因组鉴定及其在低温适应中的作用[J]. 生物技术通报, 2023, 39(2): 147-160. |
[13] | 毛可欣, 王海荣, 安淼, 刘腾飞, 王世金, 李健, 李国田. 中华猕猴桃GRAS基因家族鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 297-307. |
[14] | 齐方婷, 黄河. 观赏植物花斑形成调控机制的研究进展[J]. 生物技术通报, 2023, 39(10): 17-28. |
[15] | 尹国英, 刘畅, 常永春, 羽王洁, 王兵, 张盼, 郭玉双. 烟草半胱氨酸蛋白酶家族和相应miRNAs的鉴定及其对PVY的响应[J]. 生物技术通报, 2023, 39(10): 184-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||