生物技术通报 ›› 2022, Vol. 38 ›› Issue (12): 35-46.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0095
田清尹1,2(), 岳远征1,2, 申慧敏1,2, 潘多1,2, 杨秀莲1,2, 王良桂1,2()
收稿日期:
2022-01-18
出版日期:
2022-12-26
发布日期:
2022-12-29
作者简介:
田清尹,女,硕士研究生,研究方向:园林植物遗传育种与应用;E-mail:基金资助:
TIAN Qing-yin1,2(), YUE Yuan-zheng1,2, SHEN Hui-min1,2, PAN Duo1,2, YANG Xiu-lian1,2, WANG Liang-gui1,2()
Received:
2022-01-18
Published:
2022-12-26
Online:
2022-12-29
摘要:
类胡萝卜素是一类广泛分布于自然界的重要天然色素的总称,对于植物观赏品质的形成具有重要作用。类胡萝卜素代谢途径控制着植物黄色和橙色等颜色的形成,并影响挥发性芳香化合物的合成,进而影响植物观赏器官的色素沉积和香气产生。本文主要就类胡萝卜素代谢途径的分子调控、对植物花、果、叶的色香变化影响及利用基因工程技术对类胡萝卜素的改良等方面进行综述,以期能够更好地揭示类胡萝卜素在植物观赏器官的合成代谢与调控机制,为改良植物重要观赏品质提供帮助。
田清尹, 岳远征, 申慧敏, 潘多, 杨秀莲, 王良桂. 植物观赏器官中类胡萝卜素代谢调控的研究进展[J]. 生物技术通报, 2022, 38(12): 35-46.
TIAN Qing-yin, YUE Yuan-zheng, SHEN Hui-min, PAN Duo, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Regulation of Carotenoid Metabolism in Plant Ornamental Organs[J]. Biotechnology Bulletin, 2022, 38(12): 35-46.
图2 花、果、叶中类胡萝卜素代谢调控图 A:花中类胡萝卜素代谢调控图;B:果中类胡萝卜素代谢调控图(1:osa-miR169i-5p.2;2:ppt-miR1027a;3:sly-miR482;4:sly-miR172;5:sly-miR396;6:sly-miR395;7:csi-miR167;8:csi-miR1857);C:叶中类胡萝卜素代谢调控图;绿色箭头表示正调控,红色箭头表示负调控,实线表示直接调控基因启动子,虚线表示间接调控或调控机制尚未明确
Fig. 2 Regulation of carotenoid metabolism in flowers,fruits and leaves A:Regulation diagram of carotenoid metabolism in flowers. B:Regulation diagram of carotenoid metabolism in fruits(1:osa-miR169i-5p.2;2:ppt-miR1027a;3:sly-miR482;4:sly-miR172;5:sly-miR396;6:sly-miR395;7:csi-miR167;8:csi-miR1857). C:Regulation diagram of carotenoid metabolism in leaves. The green arrow indicates positive regulation,the red arrow indicates negative regulation,the solid line indicates direct regulation of gene promoters,and the dotted line indicates indirect regulation or regulation mechanism is not clear
实验方法 Method | 物种名称 Species | 基因 Gene | 植株表型 Plant phenotype | 参考文献 Reference |
---|---|---|---|---|
过表达外源基因 | 矮牵牛 Petunia hybrida | IoXES、TeXES、SlXES | 转基因植株花瓣颜色呈现更深的黄色,且类胡萝卜素含量和酯化叶黄素增加 | [ |
百脉根 Lotus japonicus | crtW | 转基因植株花瓣颜色较野生型深,从浅黄色变为深黄色或橙色,积累酮类胡萝卜素 | [ | |
角堇 Viola cornuta | Llccs | 转基因植株花瓣颜色从黄色变为红橙色,积累辣椒红素 | [ | |
番茄 Solanum lycopersicum | EutPSY | 转基因株系成熟果实颜色更红,类胡萝卜素的总含量增加 | [ | |
番茄 Solanum lycopersicum | CclBCH2 | 转基因株系成熟果实颜色从红色为黄色,积累大量的玉米黄质 | [ | |
本氏烟草 Nicotiana benthamiana | SlPSY | 转基因植株叶片为亮橙色,积累大量八氢番茄红素 | [ | |
烟草 Nicotiana tabacum | BKTs | 转基因植株叶片为棕色,花色也发生变化,积累虾青素 | [ | |
RNAi | 文心兰 Oncidium ‘Gower Ramsey’ | OgPSY | 文心兰花色由黄色变为白色,叶色由绿色变为黄绿色,类胡萝卜素含量减少 | [ |
文心兰 Oncidium ‘Gower Ramsey’ | OgBCH2 | 文心兰花的颜色从野生型的亮黄色变为浅黄和白黄色,类胡萝卜素含量减少 | [ | |
菊花 Chrysanthemum morifolium | CmCCD4a | 菊花白色花瓣变为黄色花瓣,类胡萝卜素含量是增加 | [ | |
番茄 Solanum lycopersicum | SlNCED | 番茄果实较对照的粉红均呈现深红色,番茄红素和β-胡萝卜素含量增加 | [ | |
番茄 Solanum lycopersicum | SlZDS | 番茄果实呈白绿色,类胡萝卜素种类减少 | [ | |
番茄 Solanum lycopersicum | SlCCD1 | 番茄果实中类胡萝卜素的含量增加,香气物质含量减少 | [ | |
柑橘 Citrus sinensis | CsCCD1 | 柑橘愈伤变黄,紫黄质、9-顺式-紫黄质的含量均较野生型显著增加 | [ | |
CRISPR/Cas9 | 欧洲油菜 Brassica napus | BnaA09.ZEP、BnaC09.ZEP | 欧洲油菜花色从黄色变为橙色,叶黄素含量显著提高,紫黄质含量显著降低 | [ |
牵牛花 Ipomoea nil | InCCD4 | 牵牛花花色从白色改为淡黄色,类胡萝卜素总量增加 | [ | |
番茄 Solanum lycopersicum | SlPsy1、SlCrtR-b2 | 番茄产生白花、黄肉表型,类胡萝卜素含量显著降低 | [ | |
香蕉Musa nana | MnPDS | 香蕉突变体中总类胡萝卜素含量降低 | [ | |
芥蓝Brassica oleracea | BoaCRTISO | 芥蓝叶片颜色变黄,类胡萝卜素含量降低 | [ |
表1 基因工程技术利用类胡萝卜素代谢相关基因在改植物良观赏品质的应用
Table 1 Application of genetic engineering technology in improving good ornamental characters of plants using carotenoid metabolism related genes
实验方法 Method | 物种名称 Species | 基因 Gene | 植株表型 Plant phenotype | 参考文献 Reference |
---|---|---|---|---|
过表达外源基因 | 矮牵牛 Petunia hybrida | IoXES、TeXES、SlXES | 转基因植株花瓣颜色呈现更深的黄色,且类胡萝卜素含量和酯化叶黄素增加 | [ |
百脉根 Lotus japonicus | crtW | 转基因植株花瓣颜色较野生型深,从浅黄色变为深黄色或橙色,积累酮类胡萝卜素 | [ | |
角堇 Viola cornuta | Llccs | 转基因植株花瓣颜色从黄色变为红橙色,积累辣椒红素 | [ | |
番茄 Solanum lycopersicum | EutPSY | 转基因株系成熟果实颜色更红,类胡萝卜素的总含量增加 | [ | |
番茄 Solanum lycopersicum | CclBCH2 | 转基因株系成熟果实颜色从红色为黄色,积累大量的玉米黄质 | [ | |
本氏烟草 Nicotiana benthamiana | SlPSY | 转基因植株叶片为亮橙色,积累大量八氢番茄红素 | [ | |
烟草 Nicotiana tabacum | BKTs | 转基因植株叶片为棕色,花色也发生变化,积累虾青素 | [ | |
RNAi | 文心兰 Oncidium ‘Gower Ramsey’ | OgPSY | 文心兰花色由黄色变为白色,叶色由绿色变为黄绿色,类胡萝卜素含量减少 | [ |
文心兰 Oncidium ‘Gower Ramsey’ | OgBCH2 | 文心兰花的颜色从野生型的亮黄色变为浅黄和白黄色,类胡萝卜素含量减少 | [ | |
菊花 Chrysanthemum morifolium | CmCCD4a | 菊花白色花瓣变为黄色花瓣,类胡萝卜素含量是增加 | [ | |
番茄 Solanum lycopersicum | SlNCED | 番茄果实较对照的粉红均呈现深红色,番茄红素和β-胡萝卜素含量增加 | [ | |
番茄 Solanum lycopersicum | SlZDS | 番茄果实呈白绿色,类胡萝卜素种类减少 | [ | |
番茄 Solanum lycopersicum | SlCCD1 | 番茄果实中类胡萝卜素的含量增加,香气物质含量减少 | [ | |
柑橘 Citrus sinensis | CsCCD1 | 柑橘愈伤变黄,紫黄质、9-顺式-紫黄质的含量均较野生型显著增加 | [ | |
CRISPR/Cas9 | 欧洲油菜 Brassica napus | BnaA09.ZEP、BnaC09.ZEP | 欧洲油菜花色从黄色变为橙色,叶黄素含量显著提高,紫黄质含量显著降低 | [ |
牵牛花 Ipomoea nil | InCCD4 | 牵牛花花色从白色改为淡黄色,类胡萝卜素总量增加 | [ | |
番茄 Solanum lycopersicum | SlPsy1、SlCrtR-b2 | 番茄产生白花、黄肉表型,类胡萝卜素含量显著降低 | [ | |
香蕉Musa nana | MnPDS | 香蕉突变体中总类胡萝卜素含量降低 | [ | |
芥蓝Brassica oleracea | BoaCRTISO | 芥蓝叶片颜色变黄,类胡萝卜素含量降低 | [ |
[1] |
Rodriguez-Concepcion M, Avalos J, Bonet ML, et al. A global perspective on carotenoids:Metabolism, biotechnology, and benefits for nutrition and health[J]. Prog Lipid Res, 2018, 70:62-93.
doi: S0163-7827(17)30039-5 pmid: 29679619 |
[2] |
Auldridge ME, McCarty DR, Klee HJ. Plant carotenoid cleavage oxygenases and their apocarotenoid products[J]. Curr Opin Plant Biol, 2006, 9(3):315-321.
pmid: 16616608 |
[3] |
Hermanns AS, Zhou XS, Xu Q, et al. Carotenoid pigment accumulation in horticultural plants[J]. Hortic Plant J, 2020, 6(6):343-360.
doi: 10.1016/j.hpj.2020.10.002 URL |
[4] |
Frusciante S, Diretto G, Bruno M, et al. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis[J]. Proc Natl Acad Sci USA, 2014, 111(33):12246-12251.
doi: 10.1073/pnas.1404629111 URL |
[5] |
周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022. DOI:10.13560/j.cnki.biotech.bull.1985.2021-1184.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1184 URL |
Zhou L, Liang XM, Zhao L. Biosynthesis of natural carotenoids:progress and perspective[J]. Biotechnol Bull, 2022. DOI:10.13560/j.cnki.biotech.bull.1985.2021-1184.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1184 URL |
|
[6] |
Rasouli O, Ahmadi N, Monfared SR, et al. Physiological, phytochemicals and molecular analysis of color and scent of different landraces of Rosa damascena during flower development stages[J]. Sci Hortic, 2018, 231:144-150.
doi: 10.1016/j.scienta.2017.12.010 URL |
[7] |
Lu SW, Zhang Y, Zheng XJ, et al. Molecular characterization, critical amino acid identification, and promoter analysis of a lycopene β-cyclase gene from Citrus[J]. Tree Genet Genomes, 2016, 12(6):1-12.
doi: 10.1007/s11295-015-0959-6 URL |
[8] |
Guzman I, Hamby S, Romero J, et al. Variability of carotenoid biosynthesis in orange colored Capsicum spp[J]. Plant Sci, 2010, 179(1/2):49-59.
doi: 10.1016/j.plantsci.2010.04.014 URL |
[9] |
Jeknić Z, Morré JT, Jeknić S, et al. Cloning and functional characterization of a gene for capsanthin-capsorubin synthase from tiger lily(Lilium lancifolium Thunb. ‘Splendens’)[J]. Plant Cell Physiol, 2012, 53(11):1899-1912.
doi: 10.1093/pcp/pcs128 pmid: 23008421 |
[10] |
Sun TH, Tadmor Y, Li L. Pathways for carotenoid biosynthesis, degradation, and storage[J]. Methods Mol Biol, 2020, 2083:3-23.
doi: 10.1007/978-1-4939-9952-1_1 pmid: 31745909 |
[11] |
Biswal B. Carotenoid catabolism during leaf senescence and its control by light[J]. J Photochem Photobiol B Biol, 1995, 30(1):3-13.
doi: 10.1016/1011-1344(95)07197-A URL |
[12] |
Ma G, Zhang LC, Matsuta A, et al. Enzymatic formation of β-citraurin from β-cryptoxanthin and Zeaxanthin by carotenoid cleavage dioxygenase4 in the flavedo of Citrus fruit[J]. Plant Physiol, 2013, 163(2):682-695.
doi: 10.1104/pp.113.223297 pmid: 23966550 |
[13] |
Rubio A, Rambla JL, Santaella M, et al. Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in β-ionone release[J]. J Biol Chem, 2008, 283(36):24816-24825.
doi: 10.1074/jbc.M804000200 URL |
[14] |
Sagawa JM, Stanley LE, LaFountain AM, et al. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers[J]. New Phytol, 2016, 209(3):1049-1057.
doi: 10.1111/nph.13647 pmid: 26377817 |
[15] |
Stanley LE, Ding BQ, Sun W, et al. A tetratricopeptide repeat protein regulates carotenoid biosynthesis and chromoplast development in monkeyflowers(Mimulus)[J]. Plant Cell, 2020, 32(5):1536-1555.
doi: 10.1105/tpc.19.00755 URL |
[16] |
Meng YY, Wang ZY, Wang YQ, et al. The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula[J]. Plant Cell, 2019, 31(11):2751-2767.
doi: 10.1105/tpc.19.00480 URL |
[17] |
Han YJ, Wu M, Cao LY, et al. Characterization of OfWRKY3, a transcription factor that positively regulates the carotenoid cleavage dioxygenase gene OfCCD4 in Osmanthus fragrans[J]. Plant Mol Biol, 2016, 91(4/5):485-496.
doi: 10.1007/s11103-016-0483-6 URL |
[18] |
Han YJ, Wang HY, Wang XD, et al. Mechanism of floral scent production in Osmanthus fragrans and the production and regulation of its key floral constituents, β-ionone and linalool[J]. Hortic Res, 2019, 6:106.
doi: 10.1038/s41438-019-0189-4 URL |
[19] |
Martel C, Vrebalov J, Tafelmeyer P, et al. The tomato mads-box transcription factor ripening inhibitor interacts with promoters involved in numerous ripening processes in a colorless nonripening-dependent manner[J]. Plant Physiol, 2011, 157(3):1568-1579.
doi: 10.1104/pp.111.181107 pmid: 21941001 |
[20] |
Fujisawa M, Shima Y, Nakagawa H, et al. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins[J]. Plant Cell, 2014, 26(1):89-101.
doi: 10.1105/tpc.113.119453 URL |
[21] |
Zhu LS, Liang SM, Chen LL, et al. Banana MaSPL16 modulates carotenoid biosynthesis during fruit ripening through activating the transcription of lycopene β-cyclase genes[J]. J Agric Food Chem, 2020, 68(5):1286-1296.
doi: 10.1021/acs.jafc.9b07134 URL |
[22] |
Ma NN, Feng HL, Meng X, et al. Overexpression of tomato SlNAC1transcription factor alters fruit pigmentation and softening[J]. BMC Plant Biol, 2014, 14:351.
doi: 10.1186/s12870-014-0351-y URL |
[23] |
Zhu KJ, Sun Q, Chen HY, et al. Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061[J]. J Exp Bot, 2021, 72(8):3137-3154.
doi: 10.1093/jxb/erab047 pmid: 33543285 |
[24] |
Xiong C, Luo D, Lin AH, et al. A tomato B-box protein SlBBX20 modulates carotenoid biosynthesis by directly activating PHYTOENE SYNTHASE 1, and is targeted for 26S proteasome-mediated degradation[J]. New Phytol, 2019, 221(1):279-294.
doi: 10.1111/nph.15373 URL |
[25] |
Llorente B, D’Andrea L, Ruiz-Sola MA, et al. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism[J]. Plant J, 2016, 85(1):107-119.
doi: 10.1111/tpj.13094 URL |
[26] |
Zhou D, Shen YH, Zhou P, et al. Papaya CpbHLH1/2 regulate carotenoid biosynthesis-related genes during papaya fruit ripening[J]. Hortic Res, 2019, 6:80.
doi: 10.1038/s41438-019-0162-2 URL |
[27] |
Toledo-Ortiz G, Johansson H, Lee KP, et al. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription[J]. PLoS Genet, 2014, 10(6):e1004416.
doi: 10.1371/journal.pgen.1004416 URL |
[28] |
Welsch R, Maass D, Voegel T, et al. Transcription factor RAP2. 2 and its interacting partner SINAT2:stable elements in the carotenogenesis of Arabidopsis leaves[J]. Plant Physiol, 2007, 145(3):1073-1085.
pmid: 17873090 |
[29] |
Wang PW, Wang YY, Wang WH, et al. Ubiquitination of phytoene synthase 1 precursor modulates carotenoid biosynthesis in tomato[J]. Commun Biol, 2020, 3(1):730.
doi: 10.1038/s42003-020-01474-3 pmid: 33273697 |
[30] |
Guo JE, Hu ZL, Li FF, et al. Silencing of histone deacetylase SlHDT3 delays fruit ripening and suppresses carotenoid accumulation in tomato[J]. Plant Sci, 2017, 265:29-38.
doi: 10.1016/j.plantsci.2017.09.013 URL |
[31] |
Cazzonelli CI, Cuttriss AJ, Cossetto SB, et al. Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8[J]. Plant Cell, 2009, 21(1):39-53.
doi: 10.1105/tpc.108.063131 pmid: 19174535 |
[32] |
Xu Q, Liu YL, Zhu AD, et al. Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type[J]. BMC Genomics, 2010, 11:246.
doi: 10.1186/1471-2164-11-246 pmid: 20398412 |
[33] |
Koul A, Yogindran S, Sharma D, et al. Carotenoid profiling, in silico analysis and transcript profiling of miRNAs targeting carotenoid biosynthetic pathway genes in different developmental tissues of tomato[J]. Plant Physiol Biochem, 2016, 108:412-421.
doi: 10.1016/j.plaphy.2016.08.001 URL |
[34] |
Liu YC, Yeh CW, Chung JD, et al. Petal-specific RNAi-mediated silencing of the phytoene synthase gene reduces xanthophyll levels to generate new Oncidium orchid varieties with white-colour blooms[J]. Plant Biotechnol J, 2019, 17(11):2035-2037.
doi: 10.1111/pbi.13179 URL |
[35] |
Zhao CJ, Safdar LB, Xie ML, et al. Mutation of the PHYTOENE DESATURASE 3 gene causes yellowish-white petals in Brassica napus[J]. Crop J, 2021, 9(5):1124-1134.
doi: 10.1016/j.cj.2020.10.012 URL |
[36] |
Kishimoto S, Ohmiya A. Carotenoid isomerase is key determinant of petal color of Calendula officinalis[J]. J Biol Chem, 2012, 287(1):276-285.
doi: 10.1074/jbc.M111.300301 pmid: 22069331 |
[37] |
Ahrazem O, Rubio-Moraga A, López RC, et al. The expression of a chromoplast-specific lycopene beta cyclase gene is involved in the high production of saffron's apocarotenoid precursors[J]. J Exp Bot, 2010, 61(1):105-119.
doi: 10.1093/jxb/erp283 pmid: 19767307 |
[38] |
Yamamizo C, Kishimoto S, Ohmiya A. Carotenoid composition and carotenogenic gene expression during Ipomoea petal development[J]. J Exp Bot, 2010, 61(3):709-719.
doi: 10.1093/jxb/erp335 pmid: 19933319 |
[39] |
Liu YJ, Ye SH, Yuan GG, et al. Gene silencing of BnaA09. ZEP and BnaC09. ZEP confers orange color in Brassica napus flowers[J]. Plant J, 2020, 104(4):932-949.
doi: 10.1111/tpj.14970 URL |
[40] |
Chiou CY, Pan HA, Chuang YN, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars[J]. Planta, 2010, 232(4):937-948.
doi: 10.1007/s00425-010-1222-x URL |
[41] |
Ureshino K, Nakayama M, Miyajima I. Contribution made by the carotenoid cleavage dioxygenase 4 gene to yellow colour fade in Azalea petals[J]. Euphytica, 2016, 207(2):401-417.
doi: 10.1007/s10681-015-1557-2 URL |
[42] |
Gao JS, Yang SX, Tang KQ, et al. GmCCD4 controls carotenoid content in soybeans[J]. Plant Biotechnol J, 2021, 19(4):801-813.
doi: 10.1111/pbi.13506 pmid: 33131209 |
[43] |
Ohmiya A, Kishimoto S, Aida R, et al. Carotenoid cleavage dioxygenase(CmCCD4a)contributes to white color formation in Chrysanthemum petals[J]. Plant Physiol, 2006, 142(3):1193-1201.
pmid: 16980560 |
[44] |
Zhou XT, Jia LD, Duan MZ, et al. Genome-wide identification and expression profiling of the carotenoid cleavage dioxygenase(CCD)gene family in Brassica napus L[J]. PLoS One, 2020, 15(9):e0238179.
doi: 10.1371/journal.pone.0238179 URL |
[45] |
Alizadeh Z, Fattahi M. Essential oil, total phenolic, flavonoids, anthocyanins, carotenoids and antioxidant activity of cultivated Damask Rose(Rosa damascena)from Iran:with chemotyping approach concerning morphology and composition[J]. Sci Hortic, 2021, 288:110341.
doi: 10.1016/j.scienta.2021.110341 URL |
[46] |
Simkin AJ, Underwood BA, Auldridge M, et al. Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of β-ionone, a fragrance volatile of Petunia flowers[J]. Plant Physiol, 2004, 136(3):3504-3514.
doi: 10.1104/pp.104.049718 URL |
[47] |
Hai NTL, Masuda JI, Miyajima I, et al. Involvement of carotenoid cleavage dioxygenase 4 gene in tepal color change in Lilium brownii var. colchesteri[J]. J Japan Soc Hort Sci, 2012, 81(4):366-373.
doi: 10.2503/jjshs1.81.366 URL |
[48] | 康保珊. 番茄材料PI114490黄色果肉形成的分子分析[D]. 北京: 中国农业大学, 2014. |
Kang BS. Molecular analysis of yellow flesh formation in tomato accession PI114490[D]. Beijing: China Agricultural University, 2014. | |
[49] |
Rodrigo MJ, Lado J, Alós E, et al. A mutant allele of ζ-carotene isomerase(Z-ISO)is associated with the yellow pigmentation of the “Pinalate” sweet orange mutant and reveals new insights into its role in fruit carotenogenesis[J]. BMC Plant Biol, 2019, 19(1):465.
doi: 10.1186/s12870-019-2078-2 pmid: 31684878 |
[50] |
Isaacson T, Ronen G, Zamir D, et al. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants[J]. Plant Cell, 2002, 14(2):333-342.
pmid: 11884678 |
[51] |
Galpaz N, Burger Y, Lavee T, et al. Genetic and chemical characterization of an EMS induced mutation in Cucumis melo CRTISO gene[J]. Arch Biochem Biophys, 2013, 539(2):117-125.
doi: 10.1016/j.abb.2013.08.006 pmid: 23973661 |
[52] |
Lana G, Zacarias-Garcia J, Distefano G, et al. Transcriptional analysis of carotenoids accumulation and metabolism in a pink-fleshed lemon mutant[J]. Genes, 2020, 11(11):1294.
doi: 10.3390/genes11111294 URL |
[53] |
Devitt LC, Fanning K, Dietzgen RG, et al. Isolation and functional characterization of a lycopene β-cyclase gene that controls fruit colour of papaya(Carica papaya L.)[J]. J Exp Bot, 2009, 61(1):33-39.
doi: 10.1093/jxb/erp284 URL |
[54] |
Borovsky Y, Tadmor Y, Bar E, et al. Induced mutation in β-CAROTENE HYDROXYLASE results in accumulation of β-carotene and conversion of red to orange color in pepper fruit[J]. Theor Appl Genet, 2013, 126(3):557-565.
doi: 10.1007/s00122-012-2001-9 pmid: 23124390 |
[55] |
Lee SY, Jang SJ, Jeong HB, et al. A mutation in Zeaxanthin epoxidase contributes to orange coloration and alters carotenoid contents in pepper fruit(Capsicum annuum)[J]. Plant J, 2021, 106(6):1692-1707.
doi: 10.1111/tpj.15264 URL |
[56] |
Falchi R, Vendramin E, Zanon L, et al. Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach[J]. Plant J, 2013, 76(2):175-187.
doi: 10.1111/tpj.12283 URL |
[57] |
Bai SL, Tuan PA, Tatsuki M, et al. Knockdown of carotenoid cleavage dioxygenase 4(CCD4)via virus-induced gene silencing confers yellow coloration in peach fruit:evaluation of gene function related to fruit traits[J]. Plant Mol Biol Report, 2016, 34(1):257-264.
doi: 10.1007/s11105-015-0920-8 URL |
[58] | 高媛. 葡萄果实降异戊二烯积累规律及调控机制研究[D]. 北京: 中国农业大学, 2016. |
Gao Y. Accumulation and transcriptional regulation of norisoprenoids in wine grapes[D]. Beijing: China Agricultural University, 2016. | |
[59] |
Cheng GT, Li YS, Qi SM, et al. SlCCD1A enhances the aroma quality of tomato fruits by promoting the synthesis of carotenoid-derived volatiles[J]. Foods, 2021, 10(11):2678.
doi: 10.3390/foods10112678 URL |
[60] |
Ibdah M, Azulay Y, Portnoy V, et al. Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon[J]. Phytochemistry, 2006, 67(15):1579-1589.
pmid: 16563447 |
[61] |
García-Gómez BE, Ruiz D, Salazar JA, et al. Analysis of metabolites and gene expression changes relative to apricot(Prunus armeniaca L.)fruit quality during development and ripening[J]. Front Plant Sci, 2020, 11:1269.
doi: 10.3389/fpls.2020.01269 pmid: 32973833 |
[62] |
Nawade B, Shaltiel-Harpaz L, Yahyaa M, et al. Analysis of apocarotenoid volatiles during the development of Ficus carica fruits and characterization of carotenoid cleavage dioxygenase genes[J]. Plant Sci, 2020, 290:110292.
doi: 10.1016/j.plantsci.2019.110292 URL |
[63] |
Kumagai MH, Donson J, Della-Cioppa G, et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA[J]. Proc Natl Acad Sci USA, 1995, 92(5):1679-1683.
doi: 10.1073/pnas.92.5.1679 URL |
[64] |
Jian Y, Zhang CL, Wang YT, et al. Characterization of the role of the neoxanthin synthase gene BoaNXS in carotenoid biosynthesis in Chinese kale[J]. Genes, 2021, 12(8):1122.
doi: 10.3390/genes12081122 URL |
[65] |
Li WX, Yang SB, Lu ZG, et al. Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L[J]. Hortic Res, 2018, 5:12.
doi: 10.1038/s41438-018-0015-4 URL |
[66] |
Su TB, Yu SC, Zhang JWF, et al. Loss of function of the carotenoid isomerase gene BrCRTISO confers orange color to the inner leaves of Chinese cabbage(Brassica rapa L. ssp. pekinensis)[J]. Plant Mol Biol Report, 2015, 33(3):648-659.
doi: 10.1007/s11105-014-0779-0 URL |
[67] |
Wu HY, Shi NR, An XY, et al. Candidate genes for yellow leaf color in common wheat(Triticum aestivum L.)and major related metabolic pathways according to transcriptome profiling[J]. Int J Mol Sci, 2018, 19(6):1594.
doi: 10.3390/ijms19061594 URL |
[68] |
Wang JM, Wu B, Zhang N, et al. Dehydration-induced carotenoid cleavage dioxygenase 1 reveals a novel route for β-ionone formation during tea(Camellia sinensis)withering[J]. J Agric Food Chem, 2020, 68(39):10815-10821.
doi: 10.1021/acs.jafc.0c04208 URL |
[69] |
Wang JM, Zhang N, Zhao MY, et al. Carotenoid cleavage dioxygenase 4 catalyzes the formation of carotenoid-derived volatile β-ionone during tea(Camellia sinensis)withering[J]. J Agric Food Chem, 2020, 68(6):1684-1690.
doi: 10.1021/acs.jafc.9b07578 URL |
[70] | 牛志强. 烟草类胡萝卜素降解关键基因CCD1的克隆、表达分析及功能研究[D]. 郑州: 河南农业大学, 2015. |
Niu ZQ. Cloning, expresssion and function analysis of CCD1 gene critical to cleavage of tobacco carotenoids[D]. Zhengzhou: Henan Agricultural University, 2015. | |
[71] | 杨永霞, 张嘉炜, 张洪映, 等. 过表达Lcy-b基因对烟草类胡萝卜素代谢及香气物质的影响[J]. 中国烟草学报, 2016, 22(3):94-100. |
Yang YX, Zhang JW, Zhang HY, et al. Effects of overexpression lycopene beta-cyclase gene on carotenoids metabolism and aroma compounds in tobacco[J]. Acta Tabacaria Sin, 2016, 22(3):94-100. | |
[72] |
Ningrum A, Minh NN, Schreiner M. Carotenoids and norisoprenoids as carotenoid degradation products in pandan leaves(Pandanus amaryllifolius roxb. )[J]. Int J Food Prop, 2015, 18(9):1905-1914.
doi: 10.1080/10942912.2014.971186 URL |
[73] |
Kishimoto S, Oda-Yamamizo C, Ohmiya A. Heterologous expression of xanthophyll esterase genes affects carotenoid accumulation in Petunia corollas[J]. Sci Rep, 2020, 10(1):1299.
doi: 10.1038/s41598-020-58313-y pmid: 31992834 |
[74] |
Suzuki S, Nishihara M, Nakatsuka T, et al. Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway[J]. Plant Cell Rep, 2007, 26(7):951-959.
pmid: 17265153 |
[75] |
Trajković M, Jevremović S, Dragićević M, et al. Alteration of flower color in Viola cornuta cv. “lutea splendens” through metabolic engineering of capsanthin/capsorubin synthesis[J]. Horticulturae, 2021, 7(9):324.
doi: 10.3390/horticulturae7090324 URL |
[76] |
Wang T, Hou YN, Hu HT, et al. Functional validation of phytoene synthase and lycopene ε-cyclase genes for high lycopene content in autumn olive fruit(Elaeagnus umbellata)[J]. J Agric Food Chem, 2020, 68(41):11503-11511.
doi: 10.1021/acs.jafc.0c03092 URL |
[77] |
Karniel U, Koch A, Zamir D, et al. Development of Zeaxanthin-rich tomato fruit through genetic manipulations of carotenoid biosynthesis[J]. Plant Biotechnol J, 2020, 18(11):2292-2303.
doi: 10.1111/pbi.13387 URL |
[78] |
Huang JC, Zhong YJ, Sandmann G, et al. Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants[J]. Planta, 2012, 236(2):691-699.
doi: 10.1007/s00425-012-1654-6 pmid: 22526507 |
[79] | Wang HM, To KY, Lai HM, et al. Modification of flower colour by suppressing β-ring carotene hydroxylase genes in Oncidium[J]. Plant Biol(Stuttg), 2016, 18(2):220-229. |
[80] |
Sun L, Yuan B, Zhang M, et al. Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit[J]. J Exp Bot, 2012, 63(8):3097-3108.
doi: 10.1093/jxb/ers026 pmid: 22345638 |
[81] |
Babu MA, Srinivasan R, Subramanian P, et al. RNAi silenced ζ-carotene desaturase developed variegated tomato transformants with increased phytoene content[J]. Plant Growth Regul, 2021, 93(2):189-201.
doi: 10.1007/s10725-020-00678-1 URL |
[82] | 张印, 万勇, 张婷, 等. 柑橘愈伤组织RNAi沉默CCD1基因对其类胡萝卜素积累的影响[J]. 园艺学报, 2020, 47(10):1982-1990. |
Zhang Y, Wan Y, Zhang T, et al. RNAi-mediated suppression of CCD1 gene impacts carotenoid accumulation in Citrus calli[J]. Acta Hortic Sin, 2020, 47(10):1982-1990. | |
[83] |
Watanabe K, Oda-Yamamizo C, Sage-Ono K, et al. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4[J]. Transgenic Res, 2018, 27(1):25-38.
doi: 10.1007/s11248-017-0051-0 pmid: 29247330 |
[84] |
D’Ambrosio C, Stigliani AL, Giorio G. CRISPR/Cas9 editing of carotenoid genes in tomato[J]. Transgenic Res, 2018, 27(4):367-378.
doi: 10.1007/s11248-018-0079-9 pmid: 29797189 |
[85] |
Kaur N, Alok A, Shivani, et al. CRISPR/Cas9-mediated efficient editing in phytoene desaturase(PDS)demonstrates precise manipulation in banana cv. Rasthali genome[J]. Funct Integr Genomics, 2018, 18(1):89-99.
doi: 10.1007/s10142-017-0577-5 URL |
[86] |
Sun B, Jiang M, Zheng H, et al. Color-related chlorophyll and carotenoid concentrations of Chinese kale can be altered through CRISPR/Cas9 targeted editing of the carotenoid isomerase gene BoaCRTISO[J]. Hortic Res, 2020, 7(1):161.
doi: 10.1038/s41438-020-00379-w URL |
[1] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[2] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[3] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[4] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[5] | 张志霞, 李天培, 曾虹, 朱稀贤, 杨天雄, 马斯楠, 黄磊. 冰冷杆菌PG-2的基因组测序及生物信息学分析[J]. 生物技术通报, 2023, 39(3): 290-300. |
[6] | 周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127. |
[7] | 段玥彤, 王鹏年, 张春宝, 林春晶. 植物黄烷酮-3-羟化酶基因研究进展[J]. 生物技术通报, 2022, 38(6): 27-33. |
[8] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
[9] | 孔谦, 黄文洁, 吴绍文, 李坤, 张名位, 晏石娟. 一种同时测定十种类胡萝卜素的液相色谱方法的建立[J]. 生物技术通报, 2022, 38(11): 80-89. |
[10] | 袁恺, 何伟, 杨云丽, 朱威宇, 彭超, 安泰, 李丽, 周卫强. 灵芝酸生物合成及代谢调控研究进展[J]. 生物技术通报, 2021, 37(8): 46-54. |
[11] | 马勤, 雷瑞峰, 迪力热巴·阿不都肉苏力, 穆耶赛尔·奥斯曼, 祖力胡玛尔·肉孜, 安登第. 环境胁迫下内生菌与宿主代谢相互作用研究进展[J]. 生物技术通报, 2021, 37(3): 153-161. |
[12] | 孟晓建, 于建东, 郑小梅, 郑平, 李志敏, 孙际宾, 叶勤. 小分子代谢物对黑曲霉己糖激酶和丙酮酸激酶的酶活调控[J]. 生物技术通报, 2021, 37(12): 180-190. |
[13] | 王悦, 欧阳丹, 汤伟, 刘仕博, 顾燕, 何增国. 六株红酵母抗氧化活性的研究[J]. 生物技术通报, 2020, 36(10): 156-164. |
[14] | 张智敏, 庄淼, 金锋杰. 米曲霉基因工程技术的进展[J]. 生物技术通报, 2018, 34(9): 170-176. |
[15] | 高越, 郭晓鹏, 杨阳, 张苗苗, 李文建, 陆栋. 生物丁醇发酵研究进展[J]. 生物技术通报, 2018, 34(8): 27-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||