生物技术通报 ›› 2023, Vol. 39 ›› Issue (3): 232-242.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0762
蒋路园1,2(), 丰美静2, 杜雨晴2, 邸葆2, 陈段芬2, 邱德有1, 杨艳芳1()
收稿日期:
2022-06-23
出版日期:
2023-03-26
发布日期:
2023-04-10
通讯作者:
杨艳芳,女,博士,副研究员,研究方向:林木次生代谢与调控;E-mail: echoyyf@caf.ac.cn作者简介:
蒋路园,女,博士研究生,研究方向:林木次生代谢与调控;E-mail: bachelorjly@163.com
基金资助:
JIANG Lu-yuan1,2(), FENG Mei-jing2, DU Yu-qing2, DI Bao2, CHEN Duan-fen2, QIU De-you1, YANG Yan-fang1()
Received:
2022-06-23
Published:
2023-03-26
Online:
2023-04-10
摘要:
通过测定低温胁迫下红豆杉电阻抗参数和紫杉烷含量变化,确定适合红豆杉低温半致死温度测定的电阻抗参数,探讨低温对红豆杉紫杉烷生物合成的影响,为扩大红豆杉引种范围及利用低温条件提高红豆杉中紫杉醇含量奠定了理论基础。以云南红豆杉、南方红豆杉(山西长治)、中国红豆杉、曼地亚红豆杉和东北红豆杉为材料,分别采用电导率法和电阻抗法测定上述树种低温半致死温度,并利用LC-MS法测定低温胁迫下红豆杉叶片中紫杉烷含量和脱落酸(abscisic acid, ABA)含量。结果表明,5种红豆杉中,中国红豆杉、南方红豆杉(山西长治)、东北红豆杉和曼地亚红豆杉均能耐受-14.668- -9.106℃低温;云南红豆杉能耐受-8.802- -3.521℃低温,高于其他4种红豆杉。电阻抗τm参数与电导法测定的5种红豆杉一年生枝低温半致死温度显著相关,相关系数为0.912。低温胁迫下,红豆杉一年生叶片中紫杉醇含量高于当年生叶片。随着处理温度的下降,云南红豆杉和东北红豆杉一年生叶片中紫杉醇含量显著增加,中国红豆杉当年生叶片中巴卡亭Ⅲ含量和10-去乙酰基紫杉醇含量显著增加。此外,红豆杉叶片中ABA含量随温度的下降而增加,当年生叶片中ABA含量高于一年生叶片。与云南红豆杉相比,东北红豆杉、曼地亚红豆杉、南方红豆杉(山西长治)和中国红豆杉能耐受更低的温度。低温有利于云南红豆杉和东北红豆杉一年生叶片中紫杉醇的合成及中国红豆杉当年叶片中巴卡亭III和10-去乙酰基紫杉醇的合成。
蒋路园, 丰美静, 杜雨晴, 邸葆, 陈段芬, 邱德有, 杨艳芳. 红豆杉低温半致死温度和低温胁迫下紫杉烷含量[J]. 生物技术通报, 2023, 39(3): 232-242.
JIANG Lu-yuan, FENG Mei-jing, DU Yu-qing, DI Bao, CHEN Duan-fen, QIU De-you, YANG Yan-fang. Semi-lethal Low Temperature and Taxane Content of Taxus Under Low Temperature Stress[J]. Biotechnology Bulletin, 2023, 39(3): 232-242.
编号 Code number | 种名 Species | 拉丁名 Latin name | 来源 Resource |
---|---|---|---|
TY | 云南红豆杉 | T. yunnanensis | 云南腾冲 |
TCV | 南方红豆杉 | T. chinensis var. mairei | 山西长治 |
TC | 中国红豆杉 | T. chinensis(Pilger)Rehd. | 甘肃陇南 |
TM | 曼地亚红豆杉 | T. × media cv. Hicksii | 山东济南 |
TCU | 东北红豆杉 | T. cuspidata Sieb. et Zucc | 黑龙江牡丹江 |
表1 试验用5种红豆杉种源信息
Table 1 Provenance information of 5 Taxus species in this test
编号 Code number | 种名 Species | 拉丁名 Latin name | 来源 Resource |
---|---|---|---|
TY | 云南红豆杉 | T. yunnanensis | 云南腾冲 |
TCV | 南方红豆杉 | T. chinensis var. mairei | 山西长治 |
TC | 中国红豆杉 | T. chinensis(Pilger)Rehd. | 甘肃陇南 |
TM | 曼地亚红豆杉 | T. × media cv. Hicksii | 山东济南 |
TCU | 东北红豆杉 | T. cuspidata Sieb. et Zucc | 黑龙江牡丹江 |
叶/枝Leaves/branches | 种Species | 回归方程Logistic equation | 决定系数R2 | 半致死温度 Semi-lethal low temperature LT50/℃ |
---|---|---|---|---|
当年生叶 Current-year leaves | 云南红豆杉T. yunnanensis | y=75.01/(1+e-(-3.00-x))+24.12 | 0.989 | -3.521 |
中国红豆杉T. chinensis(Pilger)Rehd | y=63.37/(1+e-(-12.00-x))+34.25 | 0.993 | -11.600 | |
南方红豆杉T. chinensis var. mairei | y=72.81/(1+e-(-12.00-x))+21.70 | 0.996 | -11.426 | |
东北红豆杉 T. cuspidata Sieb. et Zucc | y=63.35/(1+e-(-12.00-x))+36.18 | 0.992 | -9.611 | |
一年生叶 One-year-old leaves | 云南红豆杉T. yunnanensis | y=72.15/(1+e-(-7.00-x))+26.41 | 0.998 | -8.802 |
中国红豆杉T. chinensis(Pilger)Rehd | y=82.18/(1+e-(-12.00-x))+16.05 | 0.997 | -9.673 | |
南方红豆杉T. chinensis var. mairei | y=76.03/(1+e-(-12.50-x))+22.12 | 0.999 | -11.225 | |
东北红豆杉 T. cuspidata Sieb. et Zucc | y=72.79/(1+e-(-12.00-x))+23.22 | 0.997 | -10.937 | |
曼地亚红豆杉T. × media cv. Hicksii | y=71.34/(1+e-(-12.00-x))+46.00 | 0.963 | -9.106 | |
当年生枝 Current-year branches | 云南红豆杉T. yunnanensis | y=30.41/(1+e-(-3.00-x))+69.59 | 0.981 | -6.806 |
中国红豆杉T. chinensis(Pilger)Rehd | y=18.59/(1+e-(-12.00-x))+77.98 | 0.998 | -11.103 | |
南方红豆杉T. chinensis var. mairei | y=16.08/(1+e-(-10.00-x))+78.74 | 0.994 | -11.385 | |
东北红豆杉 T. cuspidata Sieb. et Zucc | y=16.32/(1+e-(-12.00-x))+82.36 | 0.940 | -12.731 | |
一年生枝 One-year-old branches | 云南红豆杉T. yunnanensis | y=29.94/(1+e-(-2.00-x))+68.86 | 0.915 | -7.479 |
中国红豆杉T. chinensis(Pilger)Rehd | y=25.11/(1+e-(-12.00-x))+74.89 | 0.967 | -9.626 | |
南方红豆杉T. chinensis var. mairei | y=17.52/(1+e-(-11.00-x))+82.48 | 0.987 | -12.536 | |
东北红豆杉 T. cuspidata Sieb. et Zucc | y=19.94/(1+e-(-12.00-x))+80.06 | 0.934 | -14.191 | |
曼地亚红豆杉T. × media cv. Hicksii | y=24.47/(1+e-(-15.00-x))+73.12 | 0.917 | -14.572 |
表2 电导法测定5种红豆杉叶、枝的Logistic方程及低温半致死温度
Table 2 Logistic equation and semi-lethal low temperature of leaves and branches of five Taxus species by electrolyte leakage
叶/枝Leaves/branches | 种Species | 回归方程Logistic equation | 决定系数R2 | 半致死温度 Semi-lethal low temperature LT50/℃ |
---|---|---|---|---|
当年生叶 Current-year leaves | 云南红豆杉T. yunnanensis | y=75.01/(1+e-(-3.00-x))+24.12 | 0.989 | -3.521 |
中国红豆杉T. chinensis(Pilger)Rehd | y=63.37/(1+e-(-12.00-x))+34.25 | 0.993 | -11.600 | |
南方红豆杉T. chinensis var. mairei | y=72.81/(1+e-(-12.00-x))+21.70 | 0.996 | -11.426 | |
东北红豆杉 T. cuspidata Sieb. et Zucc | y=63.35/(1+e-(-12.00-x))+36.18 | 0.992 | -9.611 | |
一年生叶 One-year-old leaves | 云南红豆杉T. yunnanensis | y=72.15/(1+e-(-7.00-x))+26.41 | 0.998 | -8.802 |
中国红豆杉T. chinensis(Pilger)Rehd | y=82.18/(1+e-(-12.00-x))+16.05 | 0.997 | -9.673 | |
南方红豆杉T. chinensis var. mairei | y=76.03/(1+e-(-12.50-x))+22.12 | 0.999 | -11.225 | |
东北红豆杉 T. cuspidata Sieb. et Zucc | y=72.79/(1+e-(-12.00-x))+23.22 | 0.997 | -10.937 | |
曼地亚红豆杉T. × media cv. Hicksii | y=71.34/(1+e-(-12.00-x))+46.00 | 0.963 | -9.106 | |
当年生枝 Current-year branches | 云南红豆杉T. yunnanensis | y=30.41/(1+e-(-3.00-x))+69.59 | 0.981 | -6.806 |
中国红豆杉T. chinensis(Pilger)Rehd | y=18.59/(1+e-(-12.00-x))+77.98 | 0.998 | -11.103 | |
南方红豆杉T. chinensis var. mairei | y=16.08/(1+e-(-10.00-x))+78.74 | 0.994 | -11.385 | |
东北红豆杉 T. cuspidata Sieb. et Zucc | y=16.32/(1+e-(-12.00-x))+82.36 | 0.940 | -12.731 | |
一年生枝 One-year-old branches | 云南红豆杉T. yunnanensis | y=29.94/(1+e-(-2.00-x))+68.86 | 0.915 | -7.479 |
中国红豆杉T. chinensis(Pilger)Rehd | y=25.11/(1+e-(-12.00-x))+74.89 | 0.967 | -9.626 | |
南方红豆杉T. chinensis var. mairei | y=17.52/(1+e-(-11.00-x))+82.48 | 0.987 | -12.536 | |
东北红豆杉 T. cuspidata Sieb. et Zucc | y=19.94/(1+e-(-12.00-x))+80.06 | 0.934 | -14.191 | |
曼地亚红豆杉T. × media cv. Hicksii | y=24.47/(1+e-(-15.00-x))+73.12 | 0.917 | -14.572 |
图1 低温胁迫下5种红豆杉一年生枝条电阻抗图谱 TM:曼地亚红豆杉;TCU:东北红豆杉;TCV:南方红豆杉(山西长治);TC:中国红豆杉;TY:云南红豆杉。下同
Fig. 1 Impedance spectra of one-year-old branches of five Taxus species under low temperature stress TM: T. × media cv. Hicksii; TCU: T. cuspidata Sieb. et Zucc; TCV: T. chinensis var. mairei(Changzhi, Shanxi); TC: T. chinensis(Pilger)Rehd.; TY: T. yunnanensis. The same below
种 Species | EL测得的半致死温度 Semi-lethal temperature by EL/℃ | EIS-re得到的半致死温度 Semi-lethal temperature by EIS-re /℃ | EIS-τm得到的半致死温度 Semi-lethal temperature by EIS-τm /℃ | EIS-β得到的半致死温度 Semi-lethal temperature by EIS-β/℃ |
---|---|---|---|---|
云南红豆杉T. yunnanensis | -7.479 | -7.538 | -7.287 | -8.346 |
中国红豆杉T. chinensis(Pilger)Rehd | -9.626 | -9.923 | -9.305 | -10.493 |
南方红豆杉T. chinensis var. mairei | -12.536 | -12.073 | -12.312 | -11.603 |
东北红豆杉T. cuspidata Sieb. et Zucc | -14.191 | -12.043 | -11.061 | -17.285 |
曼地亚红豆杉T. × media cv. Hicksii | -14.572 | -10.290 | -12.087 | -11.422 |
相关系数Correlation coefficent | 1 | 0.801 | 0.912* | 0.734 |
表3 电导法和电阻抗法测定红豆杉一年生枝半致死温度相关性分析
Table 3 Correlation analysis of semi-lethal temperature of Taxus one-year-old branches measured by conductivity method and electrical impedance method
种 Species | EL测得的半致死温度 Semi-lethal temperature by EL/℃ | EIS-re得到的半致死温度 Semi-lethal temperature by EIS-re /℃ | EIS-τm得到的半致死温度 Semi-lethal temperature by EIS-τm /℃ | EIS-β得到的半致死温度 Semi-lethal temperature by EIS-β/℃ |
---|---|---|---|---|
云南红豆杉T. yunnanensis | -7.479 | -7.538 | -7.287 | -8.346 |
中国红豆杉T. chinensis(Pilger)Rehd | -9.626 | -9.923 | -9.305 | -10.493 |
南方红豆杉T. chinensis var. mairei | -12.536 | -12.073 | -12.312 | -11.603 |
东北红豆杉T. cuspidata Sieb. et Zucc | -14.191 | -12.043 | -11.061 | -17.285 |
曼地亚红豆杉T. × media cv. Hicksii | -14.572 | -10.290 | -12.087 | -11.422 |
相关系数Correlation coefficent | 1 | 0.801 | 0.912* | 0.734 |
种 Species | EL测得的半致死温度 Semi-lethal temperature by EL/℃ | EIS-re得到的半致死温度 Semi-lethal temperature by EIS-re /℃ | EIS-τm得到的半致死温度 Semil-ethal temperature by EIS-τm /℃ | EIS-β得到的半致死温度 Semi-lethal temperature by EIS-β/℃ |
---|---|---|---|---|
云南红豆杉T. yunnanensis | -8.802 | -3.350 | -3.343 | -6.955 |
中国红豆杉T. chinensis(Pilger)Rehd | -9.673 | -9.943 | -14.348 | -9.857 |
南方红豆杉T. chinensis var. mairei | -11.225 | -13.673 | -12.319 | -14.415 |
东北红豆杉T. cuspidata Sieb. et Zucc | -10.937 | -12.398 | -11.751 | -9.421 |
曼地亚红豆杉T. × media cv. Hicksii | -9.106 | -10.975 | -10.839 | -14.650 |
相关系数Correlation coefficent | 1 | 0.797 | 0.570 | 0.321 |
表4 电导法和电阻抗法测定红豆杉一年生叶低温半致死温度相关性分析
Table 4 Correlation analysis of semi-lethal low temperature of Taxus one-year-old leaves measured by conductivity method and electrical impedance method
种 Species | EL测得的半致死温度 Semi-lethal temperature by EL/℃ | EIS-re得到的半致死温度 Semi-lethal temperature by EIS-re /℃ | EIS-τm得到的半致死温度 Semil-ethal temperature by EIS-τm /℃ | EIS-β得到的半致死温度 Semi-lethal temperature by EIS-β/℃ |
---|---|---|---|---|
云南红豆杉T. yunnanensis | -8.802 | -3.350 | -3.343 | -6.955 |
中国红豆杉T. chinensis(Pilger)Rehd | -9.673 | -9.943 | -14.348 | -9.857 |
南方红豆杉T. chinensis var. mairei | -11.225 | -13.673 | -12.319 | -14.415 |
东北红豆杉T. cuspidata Sieb. et Zucc | -10.937 | -12.398 | -11.751 | -9.421 |
曼地亚红豆杉T. × media cv. Hicksii | -9.106 | -10.975 | -10.839 | -14.650 |
相关系数Correlation coefficent | 1 | 0.797 | 0.570 | 0.321 |
图4 低温胁迫下5种红豆杉叶片ABA含量 D:当年生叶片;Y:一年生叶片。不同小写字母表示在0.05水平上差异显著。下同
Fig. 4 ABA contents of leaves of five Taxus species under low temperature stress D: Current-year leaves. Y: One-year-old leaves. Different small letters indicate significant difference at 0.05 level. The same below
叶龄 Needle age | 种 Species | 紫杉醇 Taxol/ (μg·g-1) | 巴卡亭III Baccatin III /(μg·g-1) | 10-去乙酰基紫杉醇 10-deacetyltaxol /(μg·g-1) | 三尖杉宁碱 Cephalomannine /(μg·g-1) | 7-木糖-10-去乙酰基-紫杉醇7-xylosyl-10-deacetyltaxol/(μg·g-1) | 10-去乙酰基巴卡亭III 10-deaxetylbaccatin Ⅲ/(μg·g-1) |
---|---|---|---|---|---|---|---|
当年生 Current-year | 云南红豆杉 T. yunnanensis | -0.373 | -0.651 | -0.356 | -0.017 | -0.106 | -0.566 |
南方红豆杉 T. chinensis var. mairei | -0.634 | -0.118 | -0.159 | 0.476 | -0.814* | -0.531 | |
中国红豆杉 T. chinensis(Pilger)Rehd | -0.988** | 0.216 | 0.912** | 0.442 | -0.546 | -0.437 | |
东北红豆杉 T. cuspidata Sieb. et Zucc | 0.561 | 0.959 | -0.112 | -0.675 | 0.566 | 0.323 | |
一年生 One-year-old | 云南红豆杉 T. yunnanensis | 0.771* | 0.569 | -0.703 | -0.091 | -0.542 | 0.387 |
南方红豆杉 T. chinensis var. mairei | -0.178 | -0.300 | -0.369 | -0.417 | -0.088 | -0.097 | |
中国红豆杉 T. chinensis(Pilger)Rehd | -0.330 | 0.554 | 0.106 | -0.206 | 0.132 | -0.519 | |
东北红豆杉 T. cuspidata Sieb. et Zucc | 0.493 | -0.185 | 0.427 | -0.182 | 0.299 | -0.699* | |
曼地亚红豆杉 T. × media cv. Hicksii | -0.172 | -0.290 | 0.408 | -0.199 | -0.349 | -0.296 |
表5 低温胁迫下不同种红豆杉叶片中ABA含量与紫杉烷含量相关性分析
Table 5 Correlation analysis of ABA contents and taxane contents in leaves of different Taxus species under low temperature stress
叶龄 Needle age | 种 Species | 紫杉醇 Taxol/ (μg·g-1) | 巴卡亭III Baccatin III /(μg·g-1) | 10-去乙酰基紫杉醇 10-deacetyltaxol /(μg·g-1) | 三尖杉宁碱 Cephalomannine /(μg·g-1) | 7-木糖-10-去乙酰基-紫杉醇7-xylosyl-10-deacetyltaxol/(μg·g-1) | 10-去乙酰基巴卡亭III 10-deaxetylbaccatin Ⅲ/(μg·g-1) |
---|---|---|---|---|---|---|---|
当年生 Current-year | 云南红豆杉 T. yunnanensis | -0.373 | -0.651 | -0.356 | -0.017 | -0.106 | -0.566 |
南方红豆杉 T. chinensis var. mairei | -0.634 | -0.118 | -0.159 | 0.476 | -0.814* | -0.531 | |
中国红豆杉 T. chinensis(Pilger)Rehd | -0.988** | 0.216 | 0.912** | 0.442 | -0.546 | -0.437 | |
东北红豆杉 T. cuspidata Sieb. et Zucc | 0.561 | 0.959 | -0.112 | -0.675 | 0.566 | 0.323 | |
一年生 One-year-old | 云南红豆杉 T. yunnanensis | 0.771* | 0.569 | -0.703 | -0.091 | -0.542 | 0.387 |
南方红豆杉 T. chinensis var. mairei | -0.178 | -0.300 | -0.369 | -0.417 | -0.088 | -0.097 | |
中国红豆杉 T. chinensis(Pilger)Rehd | -0.330 | 0.554 | 0.106 | -0.206 | 0.132 | -0.519 | |
东北红豆杉 T. cuspidata Sieb. et Zucc | 0.493 | -0.185 | 0.427 | -0.182 | 0.299 | -0.699* | |
曼地亚红豆杉 T. × media cv. Hicksii | -0.172 | -0.290 | 0.408 | -0.199 | -0.349 | -0.296 |
[1] | 中国科学院中国植物志编辑委员会. 中国植物志-第七卷[M]. 北京: 科学出版社, 1978: 438-443. |
Flora of China editorial committee of the Chinese academy of sciences. Flora of China volume 7[M]. Beijing: Science Press, 1978: 438-443. | |
[2] | 汪群. 曼地亚红豆杉年生长节律研究[J]. 安徽农学通报, 2016, 22(16): 92-94. |
Wang Q. Study on the annual growth rhythm of Taxus × media[J]. Anhui Agric Sci Bull, 2016, 22(16): 92-94. | |
[3] | 费永俊, 雷泽湘, 余昌均, 等. 中国红豆杉属植物的濒危原因及可持续利用对策[J]. 自然资源, 1997, 19(5): 59-63. |
Fei YJ, Lei ZX, Yu CJ, et al. The cause for endangerment of Taxus l and measures for its sustainable development in China[J]. Nat Resour, 1997, 19(5): 59-63. | |
[4] | 贺川江, 张淑英, 李先荣, 等. 东北红豆杉抗寒性分析[J]. 安徽农业科学, 2016, 44(16): 174-176. |
He CJ, Zhang SY, Li XR, et al. Cold resistance analysis of Taxus cuspidate sieb. et zucc[J]. J Anhui Agric Sci, 2016, 44(16): 174-176. | |
[5] | 祝佳媛. 东北红豆杉幼苗光合生理特性的季节动态研究[D]. 哈尔滨: 东北林业大学, 2013. |
Zhu JY. Seasonal dynamics study on photosynthetic physiological characteristics of Japanese yew(Taxus cuspidata)seedlings[D]. Harbin: Northeast Forestry University, 2013. | |
[6] | 向邓云, 谢吉容, 谈锋. 自然降温过程中曼地亚红豆杉叶片膜保护系统的变化与低温半致死温度的关系[J]. 西南师范大学学报: 自然科学版, 2001, 26(4): 452-456. |
Xiang DY, Xie JR, Tan F. The relation between the membrane protective system and semilethal temperature of Taxus × media leaves as temperature fell[J]. Journalof Southwest China Norm Univ Nat Sci, 2001, 26(4): 452-456. | |
[7] | 吕志鹏. 甘肃南部曼地亚红豆杉引种抗寒性研究[J]. 青海农林科技, 2014(2): 18-20, 25. |
Lv ZP. An anti-cold research of the introduced Taxus × media in southern Gansu[J]. Sci Technol Qinghai Agric For, 2014(2): 18-20, 25. | |
[8] | 谢吉容, 向邓云, 梅虎, 谈锋. 南方红豆杉抗寒性的变化与内源激素的关系[J]. 西南师范大学学报: 自然科学版, 2002, 27(2): 231-234. |
Xie JR, Xiang DY, Mei H, et al. Relationship between changes of cold resistance and endogenous hormone of Taxus chinensis var. mairei chenget L.K.F[J]. Journalof Southwest China Norm Univ Nat Sci, 2002, 27(2): 231-234. | |
[9] | 史喜兵, 刘杰, 张晓申, 等. 利用电导法确定五种耐阴植物的抗寒性[J]. 农业科技通讯, 2013(11): 100-101. |
Shi XB, Liu J, Zhang XS, et al. Determination of cold resistance of five shade-tolerant plants by conductivity method[J]. Bullenin Agric Sci Technol, 2013(11): 100-101. | |
[10] | 张宏涛, 陈纹, 李小伟, 等. 低温胁迫下肋果沙棘试管苗黄酮类化合物合成关键酶的活性[J]. 北方园艺, 2015(10): 5-8. |
Zhang HT, Chen W, Li XW, et al. The activity of key enzymes related to flavonoids in test-tube plantlets of Hippophae neurocarpa under low temperature[J]. North Hortic, 2015(10): 5-8. | |
[11] |
Dong YP, Qu Y, Qi R, et al. Transcriptome analysis of the biosynthesis of anthocyanins in Begonia semperflorens under low-temperature and high-light conditions[J]. Forests, 2018, 9(2): 87.
doi: 10.3390/f9020087 URL |
[12] | 谢腾, 王升, 张山山, 等. 低温胁迫对新疆紫草悬浮细胞次生代谢物的影响[J]. 中草药, 2015, 46(10): 1525-1532. |
Xie T, Wang S, Zhang SS, et al. Effects of low temperature stress on secondary metabolites of Arnebia euchroma suspension cells[J]. Chin Tradit Herb Drugs, 2015, 46(10): 1525-1532. | |
[13] |
Lange BM, Conner CF. Taxanes and taxoids of the genus Taxus-A comprehensive inventory of chemical diversity[J]. Phytochemistry, 2021, 190: 112829.
doi: 10.1016/j.phytochem.2021.112829 URL |
[14] | Yang YH, Mao JW, Tan XL. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel[J]. Chin J Nat Med, 2020, 18(12): 890-897. |
[15] | 王亚飞, 王强, 阮晓, 等. 红豆杉属植物资源的研究现状与开发利用对策[J]. 林业科学, 2012, 48(5): 116-125. |
Wang YF, Wang Q, Ruan X, et al. Research status and utilization strategies of rare medicinal plants in Taxus[J]. Sci Silvae Sin, 2012, 48(5): 116-125. | |
[16] |
Ryyppö A, Repo T, Vapaavuori E. Development of freezing tolerance in roots and shoots of Scots pine seedlings at nonfreezing temperatures[J]. Can J For Res, 1998, 28(4): 557-565.
doi: 10.1139/x98-022 URL |
[17] | 张钢, 肖建忠, 陈段芬. 测定植物抗寒性的电阻抗图谱法[J]. 植物生理与分子生物学学报, 2005, 31(1): 19-26. |
Zhang G, Xiao JZ, Chen DF. Electrical impedance spectroscopy method for measuring cold hardiness of plants[J]. Acta Photophysiol Sin, 2005, 31(1): 19-26. | |
[18] |
Repo T, Lappi J. Estimation of standard error of impedance-estimated frost resistance[J]. Scand J For Res, 1989, 4(1/2/3/4): 67-74.
doi: 10.1080/02827588909382547 URL |
[19] | 李亚青, 张钢, 郤书鹏, 等. 白皮松茎和针叶的电阻抗参数与抗寒性的相关性[J]. 林业科学, 2008, 44(4): 28-34. |
Li YQ, Zhang G, Xi SP, et al. Relation between electrical impedance spectroscopy parameters and frost hardiness in stems and needles of Pinus bungeana[J]. Sci Silvae Sin, 2008, 44(4): 28-34. | |
[20] | 王爱芳, 张钢, 魏士春, 等. 不同发育时期樟子松(Pinus sylvestris L.var. mongolica Litv.)的电阻抗参数与抗寒性的关系[J]. 生态学报, 2008, 28(11): 5741-5749. |
Wang AF, Zhang G, Wei SC, et al. Relation between frost hardiness and parameters of electrical impedance spectroscopy in saplings of different development stage of Pinus sylvestris L. var. mongolica Litv[J]. Acta Ecol Sin, 2008, 28(11): 5741-5749. | |
[21] |
Repo T, Zhang G, Ryyppö A, et al. The relation between growth cessation and frost hardening in Scots pines of different origins[J]. Trees, 2000, 14(8): 456-464.
doi: 10.1007/s004680000059 URL |
[22] | 杨雪, 张殿生, 张钢. 抗寒锻炼期间几种梨、苹果枝条的抗寒性和电阻抗图谱比较[J]. 西北农业学报, 2014, 23(4): 60-67. |
Yang X, Zhang DS, Zhang G. Frost hardiness and electrical impedance spectroscopy of shoots in several pear and apple varieties during hardening[J]. Acta Agric Boreali Occidentalis Sin, 2014, 23(4): 60-67. | |
[23] |
Stoll M, Loveys B, Dry P. Hormonal changes induced by partial rootzone drying of irrigated grapevine[J]. J Exp Bot, 2000, 51(350): 1627-1634.
pmid: 11006312 |
[24] |
Wilkinson S, Davies WJ. Ozone suppresses soil drying- and abscisic acid(ABA)-induced stomatal closure via an ethylene-dependent mechanism[J]. Plant Cell Environ, 2009, 32(8): 949-959.
doi: 10.1111/pce.2009.32.issue-8 URL |
[25] | 赵树亮. 越橘越冬期枝条生理特性研究[D]. 哈尔滨: 东北农业大学, 2014. |
Zhao SL. Research of physiological and biochemical characteristics in blueberry annual branches during overwintering[D]. Harbin: Northeast Agricultural University, 2014. | |
[26] | 芦站根, 赵昌琼, 谈锋. 不同光照条件下曼地亚红豆杉抗寒力的变化及内源激素调控[J]. 西南师范大学学报: 自然科学版, 2003, 28(1): 122-125. |
Lu ZG, Zhao CQ, Tan F. The change of leaf cold resistance abilities of Taxus × media cv. Hicksii grown at different light condition and regulation of endogenetic hormone[J]. J Southwest China Norm Univ Nat Sci, 2003, 28(1): 122-125. | |
[27] | 于少帅. 南方红豆杉活性成分含量差异分析及其与生态因子的关系研究[D]. 芜湖: 安徽师范大学, 2013. |
Yu SS. Investigation on difference of active compounds contents in Taxus chinensis var. mairei and its relationship with ecological factors[D]. Wuhu: Anhui Normal University, 2013. | |
[28] | 余龙江, 朱敏, 周莹, 等. 茉莉酸甲酯对紫杉醇生物合成的诱导作用[J]. 天然产物研究与开发, 1999, 11(5): 1-7. |
Yu LJ, Zhu M, Zhou Y, et al. The induction effect of methyl-jasmonate on taxol biosynthesis[J]. Nat Prod Res Dev, 1999, 11(5): 1-7. | |
[29] |
Du H, Liu H, Xiong L. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice[J]. Front Plant Sci, 2013, 4: 397.
doi: 10.3389/fpls.2013.00397 pmid: 24130566 |
[30] |
Croteau R, Ketchum REB, Long RM, et al. Taxol biosynthesis and molecular genetics[J]. Phytochem Rev, 2006, 5(1): 75-97.
doi: 10.1007/s11101-005-3748-2 pmid: 20622989 |
[31] | 梁研, 郑珩, 吴亮, 等. 类胡萝卜素等物质对灰葡萄孢霉菌产脱落酸的影响[J]. 药物生物技术, 2004, 11(2): 96-98. |
Liang Y, Zheng H, Wu L, et al. Effect of carotenoids on abscisic acid production of Botrytis cinerea[J]. Pharm Biotechnol, 2004, 11(2): 96-98. | |
[32] | 李永波, 樊庆琦, 王宝莲, 等. 植物法呢基焦磷酸合酶基因(FPPS)研究进展[J]. 农业生物技术学报, 2012, 20(3): 321-330. |
Li YB, Fan QQ, Wang BL, et al. Advances in the study of plant farnesyl pyrophosphate synthase genes(FPPS)[J]. J Agric Biotechnol, 2012, 20(3): 321-330. | |
[33] | Hoffman A, Shock C, Feibert E. Taxane and ABA production in yew under different soil water regimes[J]. Hort Science, 1999, 34(5): 882-885. |
[34] |
Xu MJ, Jin HH, Dong JF, et al. Abscisic acid plays critical role in ozone-induced taxol production of Taxus chinensis suspension cell cultures[J]. Biotechnol Prog, 2011, 27(5): 1415-1420.
doi: 10.1002/btpr.660 URL |
[35] | 张孟夏, 王燕燕, 于放. 脱落酸调节长春花中单萜吲哚生物碱的生物合成[J]. 分子植物育种, 2019(10): 3371-3377. |
Zhang MX, Wang YY, Yu F. Regulation of abscisic acid on the biosynthesis of monoterpenoid indole alkaloids in Catharanthus roseus[J]. Mol Plant Breed, 2019(10): 3371-3377. |
[1] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[2] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[3] | 张晓燕, 杨淑华, 丁杨林. 植物感知和传递低温信号的分子机制[J]. 生物技术通报, 2023, 39(11): 28-35. |
[4] | 邢媛, 宋健, 李俊怡, 郑婷婷, 刘思辰, 乔治军. 谷子AP基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2023, 39(11): 238-251. |
[5] | 毛可欣, 王海荣, 安淼, 刘腾飞, 王世金, 李健, 李国田. 中华猕猴桃GRAS基因家族鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 297-307. |
[6] | 尤垂淮, 谢津津, 张婷, 崔天真, 孙欣路, 臧守建, 武奕凝, 孙梦瑶, 阙友雄, 苏亚春. 钩吻脂氧合酶基因 GeLOX1 的鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 318-327. |
[7] | 于晓玲, 李文彬, 李智博, 阮孟斌. 木薯MeMYC2.2基因耐低温功能研究[J]. 生物技术通报, 2023, 39(1): 224-231. |
[8] | 金姣姣, 刘自刚, 米文博, 徐明霞, 邹娅, 徐春梅, 赵彩霞. 利用RNA-Seq鉴定调控甘蓝型油菜叶片光合特性的低温胁迫应答基因[J]. 生物技术通报, 2022, 38(4): 126-142. |
[9] | 唐彬, 刘文彬, 李小波, 王宁, 金小宝. 美洲大蠊肠道产7-木糖紫杉烷糖基水解酶菌株的筛选及鉴定[J]. 生物技术通报, 2022, 38(3): 139-148. |
[10] | 崔洁冰, 张萌, 张莹婷, 徐进. 低温胁迫对柳杉不同无性系的影响及抗寒性评价[J]. 生物技术通报, 2022, 38(3): 31-40. |
[11] | 王刚, 罗建勋, 蒲尚饶, 李亚平, 王刚, 孙志鹏. 遮荫对云曼红豆杉活性成分10-DAB及矿质营养累积的影响[J]. 生物技术通报, 2022, 38(11): 175-184. |
[12] | 乌凤章, 王贺新. 蛋白质泛素化介导的植物低温胁迫反应[J]. 生物技术通报, 2021, 37(6): 225-235. |
[13] | 孔春艳, 陈永坤, 王莎莎, 郝大海, 杨宇, 龚明. 小桐子低温胁迫下microRNA实时荧光定量PCR内参的筛选与比较[J]. 生物技术通报, 2019, 35(7): 25-32. |
[14] | 张保青, 邵敏, 黄玉新, 黄杏, 宋修鹏, 陈虎, 王盛, 谭秦亮, 杨丽涛, 李杨瑞. 甘蔗抗坏血酸过氧化物酶基因ScAPX1的克隆和表达分析[J]. 生物技术通报, 2019, 35(12): 31-37. |
[15] | 刘丽丽, 朱华, 闫艳春, 王晓雯, 张蓉, 朱建亚. 鱼类低温耐受机制与功能基因研究进展[J]. 生物技术通报, 2018, 34(8): 50-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||