生物技术通报 ›› 2023, Vol. 39 ›› Issue (12): 99-108.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0580
张龙喜1(), 吕琳1, 张欢欢2(), 周金成1, 车午男1, 董辉1()
收稿日期:
2023-06-16
出版日期:
2023-12-26
发布日期:
2024-01-11
通讯作者:
张欢欢,助理研究员,研究方向:病虫害生物防治;E-mail: 1349282933@qq.com;作者简介:
张龙喜,硕士研究生,研究方向:害虫生物防治;E-mail: 1483323869@qq.com
基金资助:
ZHANG Long-xi1(), LYU Lin1, ZHANG Huan-huan2(), ZHOU Jin-cheng1, CHE Wu-nan1, DONG Hui1()
Received:
2023-06-16
Published:
2023-12-26
Online:
2024-01-11
摘要:
RNA干扰技术问世至今20余年,已被广泛用于基因功能研究。膜翅目寄生蜂是农林害虫防治领域重要的天敌昆虫资源。RNAi技术对靶基因的昆虫沉默效果依赖于dsRNA的递送效率。寄生蜂幼期通过摄取寄主昆虫营养完成其生长发育,并与寄主昆虫发生相互作用,给RNAi技术的实施带来挑战。目前,RNAi技术已在丽蝇蛹集金小蜂(Nasonia vitripennis)、中红侧沟茧蜂(Microplitis mediator)、菜蛾盘绒茧蜂(Cotesia vestalis)、蝶蛹金小蜂(Pteromalus puparum)、斑痣悬茧蜂(Meteorus pulchricornis)等至少13种寄生蜂中开展。本文归纳了RNAi技术在寄生蜂基因调控方面的研究进展,并总结了在寄生蜂类群中影响RNAi效率的因素,以期为RNAi技术在寄生蜂类群中的应用提供参考。
张龙喜, 吕琳, 张欢欢, 周金成, 车午男, 董辉. RNAi技术在寄生蜂中的应用研究进展[J]. 生物技术通报, 2023, 39(12): 99-108.
ZHANG Long-xi, LYU Lin, ZHANG Huan-huan, ZHOU Jin-cheng, CHE Wu-nan, DONG Hui. Research Progress in the Application of RNAi Technology in Parasitoid Wasps[J]. Biotechnology Bulletin, 2023, 39(12): 99-108.
图1 siRNA介导的RNAi通路示意图 Dcr-2:III型核糖核酸酶;R2D2:形成Dicer-2/R2D2复合体的dsRNA结合蛋白;Loqs:双链RNA结合域蛋白;RP:RNA沉默复合体相关蛋白;Ago2:RNA结合蛋白;RISC:RNA沉默复合体
Fig. 1 Model of siRNA-mediated RNAi pathway Dcr-2: RNase III nuclease family enzyme; R2D2: a dsRBP that forms the Dicer-2/R2D2 complex; Loqs: double-stranded RNA-binding domain(dsRBD)protein; RP: RISC-associated proteins; Ago2: RNA-binding proteins; RISC: RNA induced silencing complex
昆虫种类 Insect species | 靶标基因 Target gene | 导入方法 Import method | 虫态 Stage | RNAi表型 Phenotype by RNAi | 参考文献 Reference |
---|---|---|---|---|---|
丽蝇蛹集金小蜂 Nasonia vitripennis | doublesex | 注射 | 幼虫和蛹 | 雄性到雌性的性别逆转 | [ |
蛹 | 1.被干扰的雄性不再能够从远处吸引雌性。2.雄性受到野生型雄性的求爱。3.雄性在激发雌性接受能力方面受到阻碍,交配成功率严重降低 | [ | |||
cinnabar | 注射 | 幼虫 | 产生红眼表型 | [ | |
venom calreticulin component | 注射 | 幼虫和蛹 | 抑制对毒液的黑化反应 | [ | |
transformer-2 | 注射 | 蛹 | 雌性到雄性性别的逆转,以及致死 | [ | |
period | 注射 | 蛹 | 雌蜂无法短时间产生滞育卵 | [ | |
DNA methyltransferases | 注射 | 蛹 | 雌性后代全部死亡,胚胎发育停滞和致死 | [ | |
Nasonia caudal | 注射 | 蛹 | 高浓度时,胚胎停止发育;低浓度时,出现钙表型 | [ | |
period | 注射 | 蛹 | 昼夜钟加快,改变了其他生物钟基因的表达,并推迟了滞育 | [ | |
Wolbachia density suppressor | 注射 | 蛹 | 导致后代胚胎wVitA水平增加 | [ | |
tudor | 注射 | 蛹 | 导致具有异常看护细胞数的双头卵泡,突变卵泡通常显示出哺乳细胞核向卵母细胞的迁移 | [ [ | |
Bicaudal-D | 注射 | 蛹 | 看护细胞数异常,出现极性缺陷,导致融合卵室以对称的方式排列 | ||
odd-paired | 注射 | 胚胎 | 导致胚胎内完全缺乏节段和头部形成的明显缺陷 | [ | |
菜蛾盘绒茧蜂 Cotesia vestalis | Polydnavirus | 注射 | 蛹 | 破坏了核衣壳形成,核衣壳不完整 | [ |
Odorant-Binding Proteins | 注射 | 蛹 | 导致OBPs转录水平的降低并延长宿主搜索时间 | [ | |
中红侧沟茧蜂Microplitis mediator | Polydnavirus | 转染法 | 细胞 | 抑制glc1.8的表达,并挽救细胞黏附 | [ |
MmRho1 | 注射 | 成虫 | 导致雌蜂卵黄素和保幼激素的下调、产卵减少和茧受损、卵和蛹生长发育受阻 | [ | |
MmedOcro | 注射 | 成虫 | 对壬醛和法尼烯的反应速度降低 | [ | |
二化螟盘绒茧蜂Cotesia chilonis | Cchsp70-4 | 注射和纳米材料浸泡 | 成虫 | 死亡率增加 | [ |
Cccaspase-1 | 注射 | 蛹 | 1-5 d蛹的后代总数、1-4 d蛹的羽化率和出茧数显著降低 | [ | |
纳米材料浸泡 | 二化螟3龄幼虫 | ||||
甲腹茧蜂 Chelonus inanitus | Polydnavirus | 注射 | 寄主卵 | 降低寄生蜂生存率,挽救了末龄幼虫的发育停滞 | [ |
斑痣悬茧蜂Meteorus pulchricornis | Fatty Acid Synthases | 注射 | 成虫 | 导致成虫阶段的脂质含量显著下降 | [ |
CYP369B3 | 注射 | 成虫 | 暴露于辛硫磷、氯氰菊酯和氯氰菊酯时,显著增加了成年黄蜂的死亡率 | [ | |
Virus-Like Particles or MpVLPs | 注射 | 蛹 | 宿主幼虫颗粒细胞和浆血细胞扩散受损 | [ | |
UDP-glycosyltransferases | 注射 | 导致UGT表达下降,并显著增加了亚致死剂量杀虫剂暴露下寄生蜂的死亡率 | [ | ||
蝶蛹金小蜂Pteromalus puparum | Pp16911 | 注射 | 寄主蛹 | 成功抑制Pp16911基因表达 | [ |
PpAmy1、PpAmy2、PpAmy3 | 注射 | 蛹 | 干扰PpAmy1缩短成虫寿命 | [ | |
布拉迪小环腹瘿蜂Leptopilina boulardi | odorant receptor co-receptors | 注射 | 幼虫 | 导致对寄主的搜索能力降低,从而降低产卵率 | [ |
异腹小环腹瘿蜂Leptopilina heterotoma | |||||
长柄匙胸瘿蜂Leptopilina syphax | |||||
布拉迪小环腹瘿蜂Leptopilina boulardi | cinnabar | 注射 注射 | 幼虫 | 棕色眼转变为红眼 | [ |
LbGAP | 蛹 | 持续抑制LbGAP基因表达 | [ | ||
日本开臂反颚茧蜂Asobara japonica | gene2362、gene3430 | 注射 | 蛹 | 黑化率、寄生率与出蜂率与对照组无显著差异 | [ |
ebony | 注射 | 幼虫 | 体色变暗 | [ [ | |
gene003054 | 注射 | 幼虫 | 成功抑制基因表达 | ||
松毛虫赤眼蜂Trichogramma dendrolimi | Vitellogenin receptor | 浸泡 | 蛹 | 卵巢结构松散,卵子减少并产生少量畸形卵子,单蜂怀卵量及产卵量也显著降低 | [ |
表1 RNAi在寄生蜂中的应用
Table 1 Application of RNAi in parasitoids
昆虫种类 Insect species | 靶标基因 Target gene | 导入方法 Import method | 虫态 Stage | RNAi表型 Phenotype by RNAi | 参考文献 Reference |
---|---|---|---|---|---|
丽蝇蛹集金小蜂 Nasonia vitripennis | doublesex | 注射 | 幼虫和蛹 | 雄性到雌性的性别逆转 | [ |
蛹 | 1.被干扰的雄性不再能够从远处吸引雌性。2.雄性受到野生型雄性的求爱。3.雄性在激发雌性接受能力方面受到阻碍,交配成功率严重降低 | [ | |||
cinnabar | 注射 | 幼虫 | 产生红眼表型 | [ | |
venom calreticulin component | 注射 | 幼虫和蛹 | 抑制对毒液的黑化反应 | [ | |
transformer-2 | 注射 | 蛹 | 雌性到雄性性别的逆转,以及致死 | [ | |
period | 注射 | 蛹 | 雌蜂无法短时间产生滞育卵 | [ | |
DNA methyltransferases | 注射 | 蛹 | 雌性后代全部死亡,胚胎发育停滞和致死 | [ | |
Nasonia caudal | 注射 | 蛹 | 高浓度时,胚胎停止发育;低浓度时,出现钙表型 | [ | |
period | 注射 | 蛹 | 昼夜钟加快,改变了其他生物钟基因的表达,并推迟了滞育 | [ | |
Wolbachia density suppressor | 注射 | 蛹 | 导致后代胚胎wVitA水平增加 | [ | |
tudor | 注射 | 蛹 | 导致具有异常看护细胞数的双头卵泡,突变卵泡通常显示出哺乳细胞核向卵母细胞的迁移 | [ [ | |
Bicaudal-D | 注射 | 蛹 | 看护细胞数异常,出现极性缺陷,导致融合卵室以对称的方式排列 | ||
odd-paired | 注射 | 胚胎 | 导致胚胎内完全缺乏节段和头部形成的明显缺陷 | [ | |
菜蛾盘绒茧蜂 Cotesia vestalis | Polydnavirus | 注射 | 蛹 | 破坏了核衣壳形成,核衣壳不完整 | [ |
Odorant-Binding Proteins | 注射 | 蛹 | 导致OBPs转录水平的降低并延长宿主搜索时间 | [ | |
中红侧沟茧蜂Microplitis mediator | Polydnavirus | 转染法 | 细胞 | 抑制glc1.8的表达,并挽救细胞黏附 | [ |
MmRho1 | 注射 | 成虫 | 导致雌蜂卵黄素和保幼激素的下调、产卵减少和茧受损、卵和蛹生长发育受阻 | [ | |
MmedOcro | 注射 | 成虫 | 对壬醛和法尼烯的反应速度降低 | [ | |
二化螟盘绒茧蜂Cotesia chilonis | Cchsp70-4 | 注射和纳米材料浸泡 | 成虫 | 死亡率增加 | [ |
Cccaspase-1 | 注射 | 蛹 | 1-5 d蛹的后代总数、1-4 d蛹的羽化率和出茧数显著降低 | [ | |
纳米材料浸泡 | 二化螟3龄幼虫 | ||||
甲腹茧蜂 Chelonus inanitus | Polydnavirus | 注射 | 寄主卵 | 降低寄生蜂生存率,挽救了末龄幼虫的发育停滞 | [ |
斑痣悬茧蜂Meteorus pulchricornis | Fatty Acid Synthases | 注射 | 成虫 | 导致成虫阶段的脂质含量显著下降 | [ |
CYP369B3 | 注射 | 成虫 | 暴露于辛硫磷、氯氰菊酯和氯氰菊酯时,显著增加了成年黄蜂的死亡率 | [ | |
Virus-Like Particles or MpVLPs | 注射 | 蛹 | 宿主幼虫颗粒细胞和浆血细胞扩散受损 | [ | |
UDP-glycosyltransferases | 注射 | 导致UGT表达下降,并显著增加了亚致死剂量杀虫剂暴露下寄生蜂的死亡率 | [ | ||
蝶蛹金小蜂Pteromalus puparum | Pp16911 | 注射 | 寄主蛹 | 成功抑制Pp16911基因表达 | [ |
PpAmy1、PpAmy2、PpAmy3 | 注射 | 蛹 | 干扰PpAmy1缩短成虫寿命 | [ | |
布拉迪小环腹瘿蜂Leptopilina boulardi | odorant receptor co-receptors | 注射 | 幼虫 | 导致对寄主的搜索能力降低,从而降低产卵率 | [ |
异腹小环腹瘿蜂Leptopilina heterotoma | |||||
长柄匙胸瘿蜂Leptopilina syphax | |||||
布拉迪小环腹瘿蜂Leptopilina boulardi | cinnabar | 注射 注射 | 幼虫 | 棕色眼转变为红眼 | [ |
LbGAP | 蛹 | 持续抑制LbGAP基因表达 | [ | ||
日本开臂反颚茧蜂Asobara japonica | gene2362、gene3430 | 注射 | 蛹 | 黑化率、寄生率与出蜂率与对照组无显著差异 | [ |
ebony | 注射 | 幼虫 | 体色变暗 | [ [ | |
gene003054 | 注射 | 幼虫 | 成功抑制基因表达 | ||
松毛虫赤眼蜂Trichogramma dendrolimi | Vitellogenin receptor | 浸泡 | 蛹 | 卵巢结构松散,卵子减少并产生少量畸形卵子,单蜂怀卵量及产卵量也显著降低 | [ |
[27] |
Funkhouser-Jones LJ, van Opstal EJ, Sharma A, et al. The maternal effect gene wds controls Wolbachia titer in Nasonia[J]. Curr Biol, 2018, 28(11): 1692-1702.e6.
doi: S0960-9822(18)30438-X pmid: 29779872 |
[28] |
Olesnicky EC, Desplan C. Distinct mechanisms for mRNA localization during embryonic axis specification in the wasp Nasonia[J]. Dev Biol, 2007, 306(1): 134-142.
pmid: 17434472 |
[29] |
Taylor SE, Dearden PK. The Nasonia pair-rule gene regulatory network retains its function over 300 million years of evolution[J]. Development, 2022, 149(5): dev199632.
doi: 10.1242/dev.199632 URL |
[30] | 周悦南. 菜蛾盘绒茧蜂多分DNA病毒复制及组装机制研究[D]. 杭州: 浙江大学, 2021. |
Zhou YN. Mechanisms of Cotesia vestalis bracovirus replication and assembly[D]. Hangzhou: Zhejiang University, 2021. | |
[31] |
Zhou YN, Xie S, Chen JN, et al. Expression and functional characterization of odorant-binding protein genes in the endoparasitic wasp Cotesia vestalis[J]. Insect Sci, 2021, 28(5): 1354-1368.
doi: 10.1111/ins.v28.5 URL |
[32] |
Beck M, Strand MR. RNA interference silences Microplitis demolitor bracovirus genes and implicates glc1.8 in disruption of adhesion in infected host cells[J]. Virology, 2003, 314(2): 521-535.
doi: 10.1016/S0042-6822(03)00463-X URL |
[33] |
Wang R, Lin Z, Zhou L, et al. Rho 1 participates in parasitoid wasp eggs maturation and host cellular immunity inhibition[J]. Insect Sci, 2023, 30(3): 677-692.
doi: 10.1111/ins.v30.3 URL |
[34] |
Li KM, Ren LY, Zhang YJ, et al. Knockdown of Microplitis mediator odorant receptor involved in the sensitive detection of two chemicals[J]. J Chem Ecol, 2012, 38(3): 287-294.
doi: 10.1007/s10886-012-0085-y URL |
[35] | 高鹏. 低温储存对二化螟盘绒茧蜂的影响及其温度耐受性的分子机制[D]. 扬州: 扬州大学, 2021. |
[1] |
Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric Chal-cone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans[J]. Plant Cell, 1990, 2(4): 279-289.
doi: 10.2307/3869076 URL |
[2] |
Fire A, Xu SQ, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669): 806-811.
doi: 10.1038/35888 |
[3] |
Kim K, Lee YS, Harris D, et al. The RNAi pathway initiated by Dicer-2 in Drosophila[J]. Cold Spring Harb Symp Quant Biol, 2006, 71: 39-44.
pmid: 17381278 |
[4] |
Geuverink E, Rensink AH, Rondeel I, et al. Maternal provision of transformer-2 is required for female development and embryo viability in the wasp Nasonia vitripennis[J]. Insect Biochem Mol Biol, 2017, 90: 23-33.
doi: 10.1016/j.ibmb.2017.09.007 URL |
[5] | 刘雅婷. 烟粉虱性别决定基因的注释与功能研究[D]. 长沙: 湖南农业大学, 2018. |
Liu YT. Annotation and functional study of sex-determination genes in Bemisia tabaci[D]. Changsha: Hunan Agricultural University, 2018. | |
[6] |
Arshad F, Sharma A, Lu C, et al. RNAi by soaking Aedes aegypti pupae in dsRNA[J]. Insects, 2021, 12(7): 634.
doi: 10.3390/insects12070634 URL |
[7] |
Zhang J, Khan SA, Heckel DG, et al. Next-generation insect-resistant plants: RNAi-mediated crop protection[J]. Trends Biotechnol, 2017, 35(9): 871-882.
doi: S0167-7799(17)30090-2 pmid: 28822479 |
[8] |
徐雪亮, 王奋山, 刘子荣, 等. RNA干扰技术在昆虫学领域研究进展[J]. 生物技术通报, 2021, 37(1): 255-261.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0653 |
Xu XL, Wang FS, Liu ZR, et al. Research progress of RNA interference technology in the field of entomology[J]. Biotechnol Bull, 2021, 37(1): 255-261. | |
[35] | Gao P. Effects of cold storage on the fitness of Cotesia chilonis and response to thermal stress in C. chilonis[D]. Yangzhou: Yangzhou University, 2021. |
[36] | 何馥晶. 二化螟盘绒茧蜂高温响应特性及温度响应基因RNAi体系的构建[D]. 扬州: 扬州大学, 2022. |
He FJ. Characteristics of high temperature response of Cotesia chilonis and construction of RNAi system of temperature response genes[D]. Yangzhou: Yangzhou University, 2022. | |
[37] |
Bonvin M, Marti D, Wyder S, et al. Cloning, characterization and analysis by RNA interference of various genes of the Chelonus inanitus polydnavirus[J]. J Gen Virol, 2005, 86(Pt 4): 973-983.
doi: 10.1099/vir.0.80833-0 URL |
[38] |
Wang J, Shen LW, Xing XR, et al. Lipid dynamics, identification, and expression patterns of fatty acid synthase genes in an endoparasitoid, Meteorus pulchricornis(Hymenoptera: Braconidae)[J]. Int J Mol Sci, 2020, 21(17): 6228.
doi: 10.3390/ijms21176228 URL |
[39] |
Xing XR, Yan MW, Pang HL, et al. Cytochrome P450s are essential for insecticide tolerance in the endoparasitoid wasp Meteorus pulchricornis(Hymenoptera: Braconidae)[J]. Insects, 2021, 12(7): 651.
doi: 10.3390/insects12070651 URL |
[40] |
Yokoi K, Sano T, Suzuki M, et al. The major constituents of the venom gland of a braconid endoparasitoid, Meteorus pulchricornis(Hymenoptera: Braconidae)[J]. Appl Entomol Zool, 2017, 52(2): 271-285.
doi: 10.1007/s13355-016-0476-6 |
[41] |
Yan MW, Xing XR, Wu FA, et al. UDP-glycosyltransferases contribute to the tolerance of parasitoid wasps towards insecticides[J]. Pestic Biochem Physiol, 2021, 179: 104967.
doi: 10.1016/j.pestbp.2021.104967 URL |
[42] | 梅耀天. 蝶蛹金小蜂两种幼虫唾液蛋白分子特性及其功能初探[D]. 杭州: 浙江大学, 2019. |
Mei YT. Molecular characteristics and functions of two salivary proteins of larve of pteromalts puparum[D]. Hangzhou: Zhejiang University, 2019. | |
[43] |
Wang BB, Yang Y, Liu MM, et al. A digestive tract expressing α-amylase influences the adult lifespan of Pteromalus puparum revealed through RNAi and rescue analyses[J]. Pest Manag Sci, 2019, 75(12): 3346-3355.
doi: 10.1002/ps.v75.12 URL |
[9] |
Gariepy TD, Kuhlmann U, Gillott C, et al. Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of Arthropods[J]. J Appl Entomol, 2007, 131(4): 225-240.
doi: 10.1111/jen.2007.131.issue-4 URL |
[10] |
Nandety RS, Kuo YW, Nouri S, et al. Emerging strategies for RNA interference(RNAi)applications in insects[J]. Bioengineered, 2015, 6(1): 8-19.
doi: 10.4161/21655979.2014.979701 pmid: 25424593 |
[11] | Joyce H, Bray I, Clynes M. RNA interference with siRNA[J]. Cancer Genomics Proteomics, 2006, 3(3-4): 127-135. |
[12] |
Lee Y, Kim M, Han JJ, et al. microRNA genes are transcribed by RNA polymerase II[J]. EMBO J, 2004, 23(20): 4051-4060.
doi: 10.1038/sj.emboj.7600385 pmid: 15372072 |
[13] |
Zhu KY, Palli SR. Mechanisms, applications, and challenges of insect RNA interference[J]. Annu Rev Entomol, 2020, 65: 293-311.
doi: 10.1146/annurev-ento-011019-025224 pmid: 31610134 |
[14] |
Han BW, Wang W, Li CJ, et al. Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased PiRNA production[J]. Science, 2015, 348(6236): 817-821.
doi: 10.1126/science.aaa1264 pmid: 25977554 |
[15] |
Marques JT, Kim K, Wu PH, et al. Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila[J]. Nat Struct Mol Biol, 2010, 17(1): 24-30.
doi: 10.1038/nsmb.1735 |
[16] |
Matranga C, Tomari Y, Shin C, et al. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes[J]. Cell, 2005, 123(4): 607-620.
doi: 10.1016/j.cell.2005.08.044 pmid: 16271386 |
[17] |
Neumeier J, Meister G. siRNA specificity: RNAi mechanisms and strategies to reduce off-target effects[J]. Front Plant Sci, 2020, 11: 526455.
doi: 10.3389/fpls.2020.526455 URL |
[18] |
Miyoshi K, Tsukumo H, Nagami T, et al. Slicer function of Drosophila Argonautes and its involvement in RISC formation[J]. Genes Dev, 2005, 19(23): 2837-2848.
doi: 10.1101/gad.1370605 URL |
[44] |
Zhang QC, Chen JN, Wang Y, et al. The odorant receptor co-receptor gene contributes to mating and host-searching behaviors in parasitoid wasps[J]. Pest Manag Sci, 2023, 79(1): 454-463.
doi: 10.1002/ps.v79.1 URL |
[45] |
Colinet D, Kremmer L, Lemauf S, et al. Development of RNAi in a Drosophila endoparasitoid wasp and demonstration of its efficiency in impairing venom protein production[J]. J Insect Physiol, 2014, 63: 56-61.
doi: 10.1016/j.jinsphys.2014.02.011 URL |
[46] | 张显. 日本开臂反颚茧蜂鉴定及其调控寄主免疫反应机制初探[D]. 杭州: 浙江大学, 2021. |
Zhang X. Identification of Asobara japonica and the preliminary study on its regulatory mechanisms of host immune responses[D]. Hangzhou: Zhejiang University, 2021. | |
[47] |
Kamiyama T, Shimada-Niwa Y, Tanaka H, et al. Whole-genome sequencing analysis and protocol for RNA interference of the endoparasitoid wasp Asobara japonica[J]. DNA Res, 2022, 29(4): dsac019.
doi: 10.1093/dnares/dsac019 URL |
[48] | 姜卓. 松毛虫赤眼蜂VgR基因的克隆、表达与功能分析[D]. 长春: 吉林农业大学, 2022. |
Jiang Z. Cloning, expression and functional analysis of vitellogenin receptor in Trichogramma dendrolimi[D]. Changchun: Jilin Agricultural University, 2022. | |
[49] | 杨广, 尤民生, 赵伊英, 等. 昆虫的RNA干扰[J]. 昆虫学报, 2009, 52(10):1156-1162. |
Yang G, You MS, Zhao YY, et al. RNA interference in insects[J]. Acta Entomol Sin, 2009, 52(10):1156-1162. | |
[50] |
刘吉升, 朱文辉, 廖文丽, 等. 昆虫RNA干扰中双链RNA的转运方式[J]. 昆虫学报, 2016, 59(6): 682-691.
doi: 10.16380/j.kcxb.2016.06.012 |
Liu JS, Zhu WH, Liao WL, et al. dsRNA delivery methods for RNA interference in insects[J]. Acta Entomol Sin, 2016, 59(6): 682-691. | |
[19] |
Wang YD, Rensink AH, Fricke U, et al. Doublesex regulates male-specific differentiation during distinct developmental time windows in a parasitoid wasp[J]. Insect Biochem Mol Biol, 2022, 142: 103724.
doi: 10.1016/j.ibmb.2022.103724 URL |
[20] | Wang YD, Sun WZ, Fleischmann S, et al. Silencing Doublesex expression triggers three-level pheromonal feminization in Nasonia vitripennis males[J]. Proc Biol Sci, 2022, 289(1967): 20212002. |
[21] | Werren JH, Loehlin DW, Giebel JD. Larval RNAi in Nasonia(parasitoid wasp)[J]. Cold Spring Harb Protoc, 2009, 2009(10): pdb.prot5311. |
[22] |
Siebert AL, Wheeler D, Werren JH. A new approach for investigating venom function applied to venom calreticulin in a parasitoid wasp[J]. Toxicon, 2015, 107(Pt B): 304-316.
doi: 10.1016/j.toxicon.2015.08.012 pmid: 26359852 |
[23] |
Mukai A, Goto SG. The clock gene period is essential for the photoperiodic response in the jewel wasp Nasonia vitripennis(Hymenoptera: Pteromalidae)[J]. Appl Entomol Zool, 2016, 51(2): 185-194.
doi: 10.1007/s13355-015-0384-1 URL |
[24] |
Zwier MV, Verhulst EC, Zwahlen RD, et al. DNA methylation plays a crucial role during early Nasonia development[J]. Insect Mol Biol, 2012, 21(1): 129-138.
doi: 10.1111/j.1365-2583.2011.01121.x pmid: 22122805 |
[25] |
Olesnicky EC, Brent AE, Tonnes L, et al. A caudal mRNA gradient controls posterior development in the wasp Nasonia[J]. Development, 2006, 133(20): 3973-3982.
pmid: 16971471 |
[26] |
Dalla Benetta E, Beukeboom LW, van de Zande L. Adaptive differences in circadian clock gene expression patterns and photoperiodic diapause induction in Nasonia vitripennis[J]. Am Nat, 2019, 193(6): 881-896.
doi: 10.1086/703159 URL |
[51] |
Kwon DH, Park JH, Lee SH. Screening of lethal genes for feeding RNAi by leaf disc-mediated systematic delivery of dsRNA in Tetranychus urticae[J]. Pestic Biochem Physiol, 2013, 105(1): 69-75.
doi: 10.1016/j.pestbp.2012.12.001 URL |
[52] |
Zou Y, Geuverink E, Beukeboom LW, et al. A chimeric gene paternally instructs female sex determination in the haplodiploid wasp Nasonia[J]. Science, 2020, 370(6520): 1115-1118.
doi: 10.1126/science.abb8949 URL |
[53] |
Yang YY, Wen CJ, Mishra A, et al. Development of the circadian clock in the German cockroach, Blattella germanica[J]. J Insect Physiol, 2009, 55(5): 469-478.
doi: 10.1016/j.jinsphys.2009.02.001 URL |
[54] |
Goto SG. Roles of circadian clock genes in insect photoperiodism[J]. Entomol Sci, 2013, 16(1): 1-16.
doi: 10.1111/ens.2013.16.issue-1 URL |
[55] |
Suzuki M, Miura K, Tanaka T. The virus-like particles of a braconid endoparasitoid wasp, Meteorus pulchricornis, inhibit hemocyte spreading in its noctuid host, Pseudaletia separata[J]. J Insect Physiol, 2008, 54(6): 1015-1022.
doi: 10.1016/j.jinsphys.2008.03.013 pmid: 18501922 |
[56] |
Du MH, Yan ZW, Hao YJ, et al. Suppression of Laccase 2 severely impairs cuticle tanning and pathogen resistance during the pupal metamorphosis of Anopheles sinensis(Diptera: Culicidae)[J]. Parasit Vectors, 2017, 10(1): 171.
doi: 10.1186/s13071-017-2118-4 URL |
[57] |
Nishide Y, Kageyama D, Hatakeyama M, et al. Diversity and function of multicopper oxidase genes in the stinkbug Plautia stali[J]. Sci Rep, 2020, 10(1): 3464.
doi: 10.1038/s41598-020-60340-8 pmid: 32103072 |
[58] |
Liu J, Lemonds TR, Marden JH, et al. A pathway analysis of melanin patterning in a hemimetabolous insect[J]. Genetics, 2016, 203(1): 403-413.
doi: 10.1534/genetics.115.186684 pmid: 26984060 |
[59] |
Chen JS, Peng YC, Zhang HN, et al. Off-target effects of RNAi correlate with the mismatch rate between dsRNA and non-target mRNA[J]. RNA Biol, 2021, 18(11): 1747-1759.
doi: 10.1080/15476286.2020.1868680 URL |
[60] | 钟馥骏. 细菌表达的赤拟谷盗防控基因dsRNA的筛选及其非靶标效应评价[D]. 杭州: 浙江大学, 2021. |
Zhong FJ. The selection of candidate gene controlling Tribolium castaneum by bacteria-derived dsRNA and its assessment of non-target effect[D]. Hangzhou: Zhejiang University, 2021. | |
[61] |
Wang KX, Peng YC, Pu J, et al. Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo[J]. Insect Biochem Mol Biol, 2016, 77: 1-9.
doi: 10.1016/j.ibmb.2016.07.007 URL |
[62] |
Zhang X, Fan Z, Wang Q, et al. RNAi efficiency through dsRNA injection is enhanced by knockdown of dsRNA nucleases in the fall webworm, Hyphantria cunea(Lepidoptera: Arctiidae)[J]. Int J Mol Sci, 2022, 23(11): 6182.
doi: 10.3390/ijms23116182 URL |
[63] |
Peng YC, Wang KX, Fu WX, et al. Biochemical comparison of dsRNA degrading nucleases in four different insects[J]. Front Physiol, 2018, 9: 624.
doi: 10.3389/fphys.2018.00624 pmid: 29892232 |
[64] | 韩云轩. 经昆虫摄食dsRNA的RNAi的现状、挑战和前景[J]. 世界农药, 2019, 41(5): 1-11, 25. |
Han YX. Present situation, challenge and prospect of RNAi feeding on dsRNA by insects[J]. World Pestic, 2019, 41(5): 1-11, 25. | |
[65] |
Song HF, Fan YH, Zhang JQ, et al. Contributions of dsRNases to differential RNAi efficiencies between the injection and oral delivery of dsRNA in Locusta migratoria[J]. Pest Manag Sci, 2019, 75(6): 1707-1717.
doi: 10.1002/ps.2019.75.issue-6 URL |
[66] |
List F, Tarone AM, Zhu-Salzman K, et al. RNA meets toxicology: efficacy indicators from the experimental design of RNAi studies for insect pest management[J]. Pest Manag Sci, 2022, 78(8): 3215-3225.
doi: 10.1002/ps.v78.8 URL |
[67] |
Huvenne H, Smagghe G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review[J]. J Insect Physiol, 2010, 56(3): 227-235.
doi: 10.1016/j.jinsphys.2009.10.004 pmid: 19837076 |
[68] |
张朋稳, 段至柔, 刘常权, 等. 褐飞虱RNAi显微注射中麻醉方法的比较[J]. 中国生物防治学报, 2023, 39(5): 1148-1155.
doi: 10.16409/j.cnki.2095-039x.2022.05.009 |
Zhang PW, Duan ZR, Liu CQ, et al. Comparison of anesthesia methods in RNAi microinjection of brown planthopper[J]. Chin J Biol Contr, 2023, 39(5): 1148-1155. | |
[69] |
Bai M, Liu ZL, Zhou YY, et al. Influence of diverse storage conditions of double-stranded RNA in vitro on the RNA interference efficiency in vivo insect Tribolium castaneum[J]. Pest Manag Sci, 2023, 79(1): 45-54.
doi: 10.1002/ps.v79.1 URL |
[1] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[2] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[3] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[4] | 齐方婷, 黄河. 观赏植物花斑形成调控机制的研究进展[J]. 生物技术通报, 2023, 39(10): 17-28. |
[5] | 刘自然, 甄珍, 陈强, 李玥莹, 王泽, 逄洪波. 植物响应Cd胁迫研究进展[J]. 生物技术通报, 2022, 38(6): 13-26. |
[6] | 雷春霞, 李灿辉, 陈永坤, 龚明. 马铃薯块茎形成的生理生化基础和分子机制[J]. 生物技术通报, 2022, 38(4): 44-57. |
[7] | 刘晓玫, 王东鑫, 张春, 魏双施. AAV介导的RNAi对SARS-CoV-2 S基因表达的抑制作用[J]. 生物技术通报, 2022, 38(3): 188-193. |
[8] | 郭宇飞, 闫荣媚, 张小茹, 曹威, 刘浩. 代谢工程改造黑曲霉生产葡萄糖二酸[J]. 生物技术通报, 2022, 38(11): 227-237. |
[9] | 李倩, 江文波, 王玉祥, 张博, 庞永珍. 苜蓿抗旱性分子研究进展[J]. 生物技术通报, 2021, 37(8): 243-252. |
[10] | 刘海光, 罗振, 董合忠. 植物硝态氮吸收和转运的调控研究进展[J]. 生物技术通报, 2021, 37(6): 192-201. |
[11] | 冯连杰, 安文静, 刘迪, 刘亚菲, 王凯婕, 梁卫红. 水稻表皮毛发育相关基因研究进展[J]. 生物技术通报, 2021, 37(6): 236-243. |
[12] | 武杞蔓, 张金梅, 李玥莹, 张颖. 有益微生物菌肥对农作物的作用机制研究进展[J]. 生物技术通报, 2021, 37(5): 221-230. |
[13] | 潘银来, 邱春辉, 王艺磊, 张子平. RNA药物的发展及其在水产上的应用[J]. 生物技术通报, 2021, 37(2): 203-215. |
[14] | 邓普荣, 刘勇波. RNAi与转Bt基因技术协同抗虫研究进展[J]. 生物技术通报, 2021, 37(10): 216-224. |
[15] | 徐雪亮, 王奋山, 刘子荣, 范琳娟, 季香云, 蒋杰贤, 姚英娟. RNA干扰技术在昆虫学领域研究进展[J]. 生物技术通报, 2021, 37(1): 255-261. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||