生物技术通报 ›› 2024, Vol. 40 ›› Issue (5): 84-93.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1103
宋辉1,2(), 曹文刚1,2, 肖晓文1,2, 杜军1()
收稿日期:
2023-11-22
出版日期:
2024-05-26
发布日期:
2024-04-19
通讯作者:
杜军,男,副教授,研究方向:发酵与合成生物学;E-mail: dujun@tsingke.com.cn作者简介:
宋辉,男,博士研究生,研究方向:蛋白结构与功能;E-mail: songhui@tsingke.com.cn
基金资助:
SONG Hui1,2(), CAO Wen-gang1,2, XIAO Xiao-wen1,2, DU Jun1()
Received:
2023-11-22
Published:
2024-05-26
Online:
2024-04-19
摘要:
【目的】开发一种新型DNA测序酶,解决一代测序技术应对复杂DNA结构模板所面临的主要挑战,如测序信号中断或测序信号快速衰减。【方法】从NCBI数据库中挖掘到了Taq DNA聚合酶和单链结合蛋白SSB基因信息,利用遗传融合、定点突变及基因设计技术获得了一种新型的测序酶Sso-Sequenase。利用亲和层析和离子交换层析,获得了纯化的测序酶。利用抗体修饰技术改良了Sso-Sequenase的性能,并且利用STR技术对其热启动性能进行了表征。选取多组不同类型的复杂模板,采用一代技术对比分析了Sso-Sequenase测序酶试剂盒和传统BigDye测序试剂盒的测序表现。【结果】Sso-Sequenase在大肠杆菌中稳定表达,纯度达到95%以上,产量高达10.5 mg/L。当温度低于35℃时,Sso-Sequenase表现出热启动活性。在复杂模板的一代测序反应中,如重复序列、高GC和发夹结构等样本,Sso-Sequenase测序酶成功完成了所有样本的测序,序列的平均碱基质量QV大于20。相比而言,BigDye测序试剂盒在处理这些复杂样本时,多数样本测序信号出现了显著衰减或中断。【结论】开发了一种纯度好、产量高,兼具热启动活性的DNA测序酶Sso-Sequenase及测序试剂盒,显著提高了复杂DNA结构模板(重复序列、高GC和发夹结构)测序成功率。
宋辉, 曹文刚, 肖晓文, 杜军. 抗体修饰DNA测序酶的开发及其应用[J]. 生物技术通报, 2024, 40(5): 84-93.
SONG Hui, CAO Wen-gang, XIAO Xiao-wen, DU Jun. Development and Application of Antibody Modified DNA Sequencing Enzymes[J]. Biotechnology Bulletin, 2024, 40(5): 84-93.
[1] |
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors[J]. Proc Natl Acad Sci USA, 1977, 74(12): 5463-5467.
doi: 10.1073/pnas.74.12.5463 pmid: 271968 |
[2] |
Innis MA, Myambo KB, Gelfand DH, et al. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA[J]. Proc Natl Acad Sci USA, 1988, 85(24): 9436-9440.
pmid: 3200828 |
[3] | Vander Horn PB, Davis MC, Cunniff JJ, et al. Thermo sequenase DNA polymerase and T. acidophilum pyrophosphatase: new thermostable enzymes for DNA sequencing[J]. BioTechniques, 1997, 22(4): 758-762, 764-765. |
[4] |
Zhu B. Bacteriophage T7 DNA polymerase - sequenase[J]. Front Microbiol, 2014, 5: 181.
doi: 10.3389/fmicb.2014.00181 pmid: 24795710 |
[5] |
Gharizadeh B, Eriksson J, Nourizad N, et al. Improvements in pyrosequencing technology by employing sequenase polymerase[J]. Anal Biochem, 2004, 330(2): 272-280.
pmid: 15203333 |
[6] |
Franca LTC, Carrilho E, Kist TBL. A review of DNA sequencing techniques[J]. Q Rev Biophys, 2002, 35(2): 169-200.
pmid: 12197303 |
[7] |
Eckert KA, Kunkel TA. High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase[J]. Nucleic Acids Res, 1990, 18(13): 3739-3744.
pmid: 2374708 |
[8] |
Wang Y, Prosen DE, Mei L, et al. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro[J]. Nucleic Acids Res, 2004, 32(3): 1197-1207.
pmid: 14973201 |
[9] |
Tabor S, Richardson CC. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides[J]. Proc Natl Acad Sci USA, 1995, 92(14): 6339-6343.
doi: 10.1073/pnas.92.14.6339 pmid: 7603992 |
[10] |
Kieleczawa J. Fundamentals of sequencing of difficult templates—an overview[J]. J Biomol Tech, 2006, 17(3): 207-217.
pmid: 16870712 |
[11] |
Kieleczawa J, Adam D, Bintzler D, et al. Identification of optimal protocols for sequencing difficult templates: results of the 2008 ABRF DNA sequencing research group difficult template study 2008[J]. J Biomol Tech, 2009, 20(2): 116-127.
pmid: 19503623 |
[12] | Kieleczawa J. DNA sequencing: optimizing the process and analysis[M]. Sudbury, Mass.: Jones and Bartlett Publishers, 2005. |
[13] | Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing[J]. Nucleic Acids Res, 2012, 40(10): e72. |
[14] | Chen YC, Liu T, Yu CH, et al. Effects of GC bias in next-generation-sequencing data on de novo genome assembly[J]. PLoS One, 2013, 8(4): e62856. |
[15] |
Kozarewa I, Ning ZM, Quail MA, et al. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of(G+C)-biased genomes[J]. Nat Methods, 2009, 6(4): 291-295.
doi: 10.1038/nmeth.1311 pmid: 19287394 |
[16] |
Fuller CW, Middendorf LR, Benner SA, et al. The challenges of sequencing by synthesis[J]. Nat Biotechnol, 2009, 27(11): 1013-1023.
doi: 10.1038/nbt.1585 pmid: 19898456 |
[17] |
Astatke M, Grindley ND, Joyce CM. How E. coli DNA polymerase I(Klenow fragment)distinguishes between deoxy- and dideoxynucleotides[J]. J Mol Biol, 1998, 278(1): 147-165.
doi: 10.1006/jmbi.1998.1672 pmid: 9571040 |
[18] |
Beese LS, Derbyshire V, Steitz TA. Structure of DNA polymerase I Klenow fragment bound to duplex DNA[J]. Science, 1993, 260(5106): 352-355.
doi: 10.1126/science.8469987 pmid: 8469987 |
[19] | Doublie S, Ellenberger T. The mechanism of action of T7 DNA polymerase[J]. Curr Opin Struct Biol, 1998, 8(6): 704-712. |
[20] |
Tabor S, Richardson CC. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase[J]. Proc Natl Acad Sci USA, 1987, 84(14): 4767-4771.
pmid: 3474623 |
[21] | Reeve MA, Fuller CW. A novel thermostable polymerase for DNA sequencing[J]. Nature, 1995, 376(6543): 796-797. |
[22] |
Takeda Y, Ohlendorf DH, Anderson WF, et al. DNA-binding proteins[J]. Science, 1983, 221(4615): 1020-1026.
pmid: 6308768 |
[23] | Kur J, Olszewski M, Dlugolecka A, et al. Single-stranded DNA-binding proteins(SSBs)-sources and applications in molecular biology[J]. Acta Biochim Pol, 2005, 52(3): 569-574. |
[24] |
Rapley R. Enhancing PCR amplification and sequencing using DNA-binding proteins[J]. Mol Biotechnol, 1994, 2(3): 295-298.
pmid: 7866882 |
[25] | Kim Y, Eom SH, Wang J, et al. Crystal structure of Thermus aquat-icus DNA polymerase[J]. Nature, 1995, 376(6541): 612-616. |
[26] | Obeid S, Baccaro A, Welte W, et al. Structural basis for the synthesis of nucleobase modified DNA by Thermus aquaticus DNA polymerase[J]. Proc Natl Acad Sci USA, 2010, 107(50): 21327-21331. |
[27] |
Lawyer FC, Stoffel S, Saiki RK, et al. Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus[J]. J Biol Chem, 1989, 264(11): 6427-6437.
pmid: 2649500 |
[28] | Roayaei M, Galehdari H. Cloning and expression of Thermus aquaticus DNA polymerase in Escherichia coli[J]. Jundishapur J Microbiol, 2008, 1(1): 1. |
[29] |
Lawyer FC, Stoffel S, Saiki RK, et al. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity[J]. PCR Methods Appl, 1993, 2(4): 275-287.
doi: 10.1101/gr.2.4.275 pmid: 8324500 |
[30] |
Mello C, Fire A. DNA transformation[J]. Method Cell Biol, 1995, 48: 451-482.
pmid: 8531738 |
[31] | Hanahan D, Bloom FR. Mechanisms of DNA transformation[J]. Escherichia Coli, 1996, 1: 2449-2459. |
[32] |
Wilharm G, Lepka D, Faber F, et al. A simple and rapid method of bacterial transformation[J]. J Microbiol Methods, 2010, 80(2): 215-216.
doi: 10.1016/j.mimet.2009.12.002 pmid: 20004690 |
[33] | Chang AY, Chau V, Landas JA, et al. Preparation of calcium competent Escherichia coli and heat-shock transformation[J]. JEMI Methods, 2017, 1: 22-25. |
[34] |
Smith PK, Krohn RI, Hermanson GT, et al. Measurement of protein using bicinchoninic acid[J]. Anal Biochem, 1985, 150(1): 76-85.
doi: 10.1016/0003-2697(85)90442-7 pmid: 3843705 |
[35] |
Brown RE, Jarvis KL, Hyland KJ. Protein measurement using bicinchoninic acid: elimination of interfering substances[J]. Anal Biochem, 1989, 180(1): 136-139.
doi: 10.1016/0003-2697(89)90101-2 pmid: 2817336 |
[36] |
Walker JM. The bicinchoninic acid(BCA)assay for protein quantitation[J]. Methods Mol Biol, 1994, 32: 5-8.
pmid: 7951748 |
[37] | He FL. BCA(bicinchoninic acid)protein assay[J]. Bio-Protocol, 2011, 1(5): e44. |
[38] | Bocian A, Sławek S, Jaromin M, et al. Comparison of methods for measuring protein concentration in venom samples[J]. Animals, 2020, 10(3): 448. |
[39] | Masago K, Fujita S, Oya Y, et al. Comparison between fluorimetry(qubit)and spectrophotometry(NanoDrop)in the quantification of DNA and RNA extracted from frozen and FFPE tissues from lung cancer patients: a real-world use of genomic tests[J]. Medicina, 2021, 57(12): 1375. |
[40] | Bisht SS, Panda AK. DNA sequencing: methods and applications[M]// Advances in Biotechnology. New Delhi: Springer, 2014: 11-23. |
[41] |
Shendure J, Lieberman Aiden E. The expanding scope of DNA sequencing[J]. Nat Biotechnol, 2012, 30(11): 1084-1094.
doi: 10.1038/nbt.2421 pmid: 23138308 |
[1] | 孙亚楠, 王春雪, 王欣, 杜秉海, 刘凯, 汪城墙. 萎缩芽孢杆菌CNY01的生防特性及其对玉米的抗盐促生作用[J]. 生物技术通报, 2024, 40(5): 248-260. |
[2] | 孔德婷, 齐笑含, 刘兴蕾, 李丽萍, 胡凤益, 黄立钰, 秦世雯. 不同多年生稻品种内生细菌群落多样性比较分析[J]. 生物技术通报, 2024, 40(5): 225-236. |
[3] | 於莉军, 王桥美, 彭文书, 严亮, 杨瑞娟. 景迈山古茶园与现代有机茶园根际土壤微生物群落研究[J]. 生物技术通报, 2024, 40(5): 237-247. |
[4] | 杨淇, 魏子迪, 宋娟, 童堃, 杨柳, 王佳涵, 刘海燕, 栾维江, 马轩. 水稻组蛋白H1三突变体的创建和转录组学分析[J]. 生物技术通报, 2024, 40(4): 85-96. |
[5] | 雷美玲, 饶文华, 胡进锋, 岳琪, 吴祖建, 范国成. 黄龙病发病芦柑根际土壤细菌群落组成与多样性特征[J]. 生物技术通报, 2024, 40(2): 266-276. |
[6] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
[7] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[8] | 郭少华, 毛会丽, 刘征权, 付美媛, 赵平原, 马文博, 李旭东, 关建义. 一株鱼源致病性嗜水气单胞菌XDMG的全基因组测序及比较基因组分析[J]. 生物技术通报, 2023, 39(8): 291-306. |
[9] | 吴昊, 刘紫微, 郑颖, 戴雅文, 时权. 单细胞水平解析人牙龈间充质干细胞异质性[J]. 生物技术通报, 2023, 39(7): 325-332. |
[10] | 赵金玲, 安磊, 任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J]. 生物技术通报, 2023, 39(6): 158-170. |
[11] | 徐小文, 李金仓, 海都, 查玉平, 宋菲, 王义勋. 核桃炭疽菌携带病毒种类鉴定及多样性分析[J]. 生物技术通报, 2023, 39(3): 278-289. |
[12] | 张志霞, 李天培, 曾虹, 朱稀贤, 杨天雄, 马斯楠, 黄磊. 冰冷杆菌PG-2的基因组测序及生物信息学分析[J]. 生物技术通报, 2023, 39(3): 290-300. |
[13] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[14] | 和梦颖, 刘文彬, 林震鸣, 黎尔彤, 汪洁, 金小宝. 一株抗革兰阳性菌的戈登氏菌WA4-43全基因组测序与分析[J]. 生物技术通报, 2023, 39(2): 232-242. |
[15] | 曲春娟, 朱悦, 江晨, 曲明静, 王向誉, 李晓. 铜绿丽金龟线粒体全基因组及其系统发育分析[J]. 生物技术通报, 2023, 39(2): 263-273. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||