生物技术通报 ›› 2024, Vol. 40 ›› Issue (7): 163-171.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0162
收稿日期:
2024-02-18
出版日期:
2024-07-26
发布日期:
2024-07-30
通讯作者:
哈斯阿古拉,男,博士,教授,研究方向:植物分子生物学及基因工程;E-mail: hasiagula@imu.edu.cn作者简介:
臧文蕊,女,研究方向:植物分子生物学及基因工程;E-mail: 1211589256@qq.com
基金资助:
ZANG Wen-rui(), MA Ming, CHE Gen, HASI Agula()
Received:
2024-02-18
Published:
2024-07-26
Online:
2024-07-30
摘要:
【目的】 油菜素唑抗性因子(brassinazole-resistant,BZR)是植物特有的转录因子,对植物的生长发育起着至关重要的作用。从甜瓜全基因组范围内鉴定CmBZR基因家族成员,分析其相关基因的表达模式,为进一步探究甜瓜BZR基因家族的生物学功能提供基础。【方法】 基于甜瓜全基因组数据,通过BLAST对甜瓜BZR家族基因进行鉴定,利用生物信息学的方法分析了该家族蛋白的理化性质、基因染色体分布、基因结构、蛋白质结构域、系统进化以及启动子顺式作用元件,并利用荧光定量PCR验证BZR家族基因在甜瓜不同组织及不同生长发育时期果实中的表达情况。【结果】 甜瓜中共鉴定到6个BZR基因,系统进化分析可将其分为5个亚家族,CmBZR基因分布于第3、7、8、11和12染色体上。所有的BZR蛋白质都具有保守的结构域。CmBZR基因启动子区域显著富集与生长发育、激素信号转导和非生物逆境胁迫相关的顺式作用元件。CmBEH1-4在茎、两性花以及子房中高表达,在生长期、成熟期、呼吸跃变期和呼吸跃变后期果实中也均有表达。【结论】 在全基因组范围内从甜瓜中系统鉴定出6个甜瓜CmBZR基因家族成员,不同基因在甜瓜的各个组织和不同的生长发育时期均有表达,且表达模式存在差异。
臧文蕊, 马明, 砗根, 哈斯阿古拉. 甜瓜BZR转录因子家族基因的全基因组鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(7): 163-171.
ZANG Wen-rui, MA Ming, CHE Gen, HASI Agula. Genome-wide Identification and Expression Pattern Analysis of BZR Transcription Factor Gene Family of Melon[J]. Biotechnology Bulletin, 2024, 40(7): 163-171.
基因名称 Gene name | 登录号Accession No. | 染色体分布Chromosome distribution | 染色体座位Chromosomal loci/bp | ORF /bp | 氨基酸数量Number of amino acids | 分子量Molecular weight/kD | 等电点Isoelectric point(pI) |
---|---|---|---|---|---|---|---|
CmBZR1 | MELO3C010925.2.1 | Chr 03 | 29999092-30000475 | 936 | 311 | 34.05 | 9.16 |
CmBES1 | MELO3C007804.2.1 | Chr 08 | 5468519-5471484 | 960 | 319 | 34.71 | 8.96 |
CmBEH1 | MELO3C016213.2.1 | Chr 07 | 22268773-22275513 | 1 932 | 643 | 75.11 | 5.90 |
CmBEH2 | MELO3C021214.2.1 | Chr 11 | 31280641-31285843 | 2 046 | 681 | 78.21 | 5.74 |
CmBEH3 | MELO3C016121.2.1 | Chr 07 | 20822745-20826732 | 978 | 325 | 34.70 | 8.50 |
CmBEH4 | MELO3C002681.2.1 | Chr 12 | 22058946-22061841 | 984 | 327 | 39.52 | 9.00 |
表1 甜瓜BZR家族基本信息
Table 1 Basic information of BZR family members in melon
基因名称 Gene name | 登录号Accession No. | 染色体分布Chromosome distribution | 染色体座位Chromosomal loci/bp | ORF /bp | 氨基酸数量Number of amino acids | 分子量Molecular weight/kD | 等电点Isoelectric point(pI) |
---|---|---|---|---|---|---|---|
CmBZR1 | MELO3C010925.2.1 | Chr 03 | 29999092-30000475 | 936 | 311 | 34.05 | 9.16 |
CmBES1 | MELO3C007804.2.1 | Chr 08 | 5468519-5471484 | 960 | 319 | 34.71 | 8.96 |
CmBEH1 | MELO3C016213.2.1 | Chr 07 | 22268773-22275513 | 1 932 | 643 | 75.11 | 5.90 |
CmBEH2 | MELO3C021214.2.1 | Chr 11 | 31280641-31285843 | 2 046 | 681 | 78.21 | 5.74 |
CmBEH3 | MELO3C016121.2.1 | Chr 07 | 20822745-20826732 | 978 | 325 | 34.70 | 8.50 |
CmBEH4 | MELO3C002681.2.1 | Chr 12 | 22058946-22061841 | 984 | 327 | 39.52 | 9.00 |
图1 CmBZR蛋白序列分析 A:6个CmBZR蛋白的多序列比对;B:CmBZR序列中BZR结构域的保守位点。*:CmBZR蛋白序列保守基序
Fig. 1 Analysis of CmBZR protein sequences A: Multiple sequence alignment of 6 CmBZR proteins; B: conserved sites of BZR domains in CmBZR sequences. *: Conserved motif of CmBZR protein sequences
图3 拟南芥、水稻、番茄、黄瓜、南瓜和甜瓜中BZR蛋白的系统发育树分析 I-V为6个物种BZR家族成员的5个亚家族
Fig. 3 Phylogenetic tree analysis of BZR proteins from Arabidopsis,Oryza sativa,Solanum lycopersicon,Cucumis sativus,Cucurbita moschata and C. smelo I-V indicates different subfamily of BZR members in six species
图5 CmBZR基因的表达模式分析 A:6个CmBZR基因在甜瓜不同组织中表达的热图;B:CmBZR基因在甜瓜Rt、S、L、FF、MF、O、G、R、C和P中的表达谱,这些字母分别代表根、茎、叶、两性花、雄花、子房、生长期、成熟期、呼吸跃变期呼吸跃变后期果实
Fig. 5 Expression analysis of CmBZR in melon A: Heat map of 6 CmBZR genes expressed differently in different tissues of melon;B: expression profiles of CmBZR genes in melon’s Rt, S, L, FF, MF, O, G,R, C and P, and they indicate the root, stem, leaf, female flower, male flower, ovary, growing stage, ripening stage, climacteric stage, and post-climacteric stage fruit, respectively.
[1] | Shin AY, Kim YM, Koo N, et al. Transcriptome analysis of the oriental melon(Cucumis melo L. var. makuwa)during fruit development[J]. PeerJ, 2017, 5: e2834. |
[2] | Yin YH, Vafeados D, Tao Y, et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis[J]. Cell, 2005, 120(2): 249-259. |
[3] |
Steber CM, McCourt P. A role for brassinosteroids in germination in Arabidopsis[J]. Plant Physiol, 2001, 125(2): 763-769.
doi: 10.1104/pp.125.2.763 pmid: 11161033 |
[4] | Yang CJ, Zhang C, Lu YN, et al. The mechanisms of brassinosteroids'action: from signal transduction to plant development[J]. Mol Plant, 2011, 4(4): 588-600. |
[5] | Galstyan A, Nemhauser JL. Auxin promotion of seedling growth via ARF5 is dependent on the brassinosteroid-regulated transcription factors BES1 and BEH4[J]. Plant Direct, 2019, 3(9): e00166. |
[6] |
Liang T, Mei SL, Shi C, et al. UVR8 interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidopsis[J]. Dev Cell, 2018, 44(4): 512-523.e5.
doi: S1534-5807(17)31079-1 pmid: 29398622 |
[7] | Wang WX, Lu XD, Li L, et al. Photoexcited CRYPTOCHROME1 interacts with dephosphorylated BES1 to regulate brassinosteroid signaling and photomorphogenesis in Arabidopsis[J]. Plant Cell, 2018, 30(9): 1989-2005. |
[8] | Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses[J]. Plant Physiol Biochem, 2009, 47(1): 1-8. |
[9] |
Liao K, Peng YJ, Yuan LB, et al. Brassinosteroids antagonize jasmonate-activated plant defense responses through BRI1-EMS-SUPPRESSOR1(BES1)[J]. Plant Physiol, 2020, 182(2): 1066-1082.
doi: 10.1104/pp.19.01220 pmid: 31776183 |
[10] | Cui XY, Gao Y, Guo J, et al. BES/BZR transcription factor TaBZR2 positively regulates drought responses by activation of TaGST1[J]. Plant Physiol, 2019, 180(1): 605-620. |
[11] | Jaillais Y, Hothorn M, Belkhadir Y, et al. Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor[J]. Genes Dev, 2011, 25(3): 232-237. |
[12] | Tang WQ, Kim TW, Oses-Prieto JA, et al. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis[J]. Science, 2008, 321(5888): 557-560. |
[13] | Kim TW, Guan SH, Burlingame AL, et al. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2[J]. Mol Cell, 2011, 43(4): 561-571. |
[14] |
Peng P, Yan ZY, Zhu YY, et al. Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome-mediated protein degradation[J]. Mol Plant, 2008, 1(2): 338-346.
doi: 10.1093/mp/ssn001 pmid: 18726001 |
[15] | Tang WQ, Yuan M, Wang RJ, et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1[J]. Nat Cell Biol, 2011, 13(2): 124-131. |
[16] |
Yin YH, Wang ZY, Mora-Garcia S, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation[J]. Cell, 2002, 109(2): 181-191.
doi: 10.1016/s0092-8674(02)00721-3 pmid: 12007405 |
[17] |
Wang ZY, Nakano T, Gendron J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis[J]. Dev Cell, 2002, 2(4): 505-513.
doi: 10.1016/s1534-5807(02)00153-3 pmid: 11970900 |
[18] | Bai MY, Zhang LY, Gampala SS, et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice[J]. Proc Natl Acad Sci USA, 2007, 104(34): 13839-13844. |
[19] | Gampala SS, Kim TW, He JX, et al. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis[J]. Dev Cell, 2007, 13(2): 177-189. |
[20] |
Szekeres M, Németh K, Koncz-Kálmán Z, et al. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis[J]. Cell, 1996, 85(2): 171-182.
doi: 10.1016/s0092-8674(00)81094-6 pmid: 8612270 |
[21] |
Gil P, Liu Y, Orbović V, et al. Characterization of the auxin-inducible SAUR-AC1 gene for use as a molecular genetic tool in Arabidopsis[J]. Plant Physiol, 1994, 104(2): 777-784.
doi: 10.1104/pp.104.2.777 pmid: 8159792 |
[22] | Xie LQ, Yang CJ, Wang XL. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis[J]. J Exp Bot, 2011, 62(13): 4495-4506. |
[23] |
Ibañez C, Delker C, Martinez C, et al. Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1[J]. Curr Biol, 2018, 28(2): 303-310.e3.
doi: S0960-9822(17)31602-0 pmid: 29337075 |
[24] |
Oh E, Zhu JY, Wang ZY. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses[J]. Nat Cell Biol, 2012, 14(8): 802-809.
doi: 10.1038/ncb2545 pmid: 22820378 |
[25] | Chen LG, Gao ZH, Zhao ZY, et al. BZR1 family transcription factors function redundantly and indispensably in BR signaling but exhibit BRI1-independent function in regulating anther development in Arabidopsis[J]. Mol Plant, 2019, 12(10): 1408-1415. |
[26] | 于好强, 孙福艾, 冯文奇, 等. 转录因子BES1/BZR1调控植物生长发育及抗逆性[J]. 遗传, 2019, 41(3): 206-214. |
Yu HQ, Sun FA, Feng WQ, et al. The BES1/BZR1 transcription factors regulate growth, development and stress resistance in plants[J]. Hereditas, 2019, 41(3): 206-214. | |
[27] | He JX, Gendron JM, Sun Y, et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses[J]. Science, 2005, 307(5715): 1634-1638. |
[28] | Luo SL, Zhang GB, Zhang ZY, et al. Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber(Cucumis sativus L.)[J]. BMC Plant Biol, 2023, 23(1): 214. |
[29] | 李春, 刘小俊, 蔡鹏, 等. 中国南瓜BZR基因家族的全基因组鉴定及生物信息学分析[J]. 分子植物育种, 2022, 20(19): 6324-6330. |
Li C, Liu XJ, Cai P, et al. Genome-wide identification and bioinformatics analysis of BZR gene family in pumpkin(Cucurbita moschata duch.)[J]. Mol Plant Breed, 2022, 20(19): 6324-6330. | |
[30] | 陈旭, 沈春洋, 莫福磊, 等. 番茄BZR基因家族鉴定及非生物胁迫下表达模式分析[J]. 东北农业大学学报, 2021, 52(11): 9-17. |
Chen X, Shen CY, Mo FL, et al. Identification of BZR gene family in tomato and expression patterns analysis under abiotic stress[J]. J Northeast Agric Univ, 2021, 52(11): 9-17. | |
[31] | Zheng Y, Wu S, Bai Y, et al. Cucurbit Genomics Database(CuGenDB): a central portal for comparative and functional genomics of cucurbit crops[J]. Nucleic Acids Res, 2019, 47(D1): D1128-D1136. |
[32] |
Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure[J]. BMC Bioinformatics, 2010, 11: 431.
doi: 10.1186/1471-2105-11-431 pmid: 20718988 |
[33] | Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020[J]. Nucleic Acids Res, 2021, 49(D1): D458-D460. |
[34] |
Wilkins MR, Gasteiger E, Bairoch A, et al. Protein identification and analysis tools in the ExPASy server[J]. Methods Mol Biol, 1999, 112: 531-552.
pmid: 10027275 |
[35] |
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Mol Biol Evol, 2021, 38(7): 3022-3027.
doi: 10.1093/molbev/msab120 pmid: 33892491 |
[36] |
Waterhouse AM, Procter JB, Martin DMA, et al. Jalview Version 2—a multiple sequence alignment editor and analysis workbench[J]. Bioinformatics, 2009, 25(9): 1189-1191.
doi: 10.1093/bioinformatics/btp033 pmid: 19151095 |
[37] |
Crooks GE, Hon G, Chandonia JM, et al. WebLogo: a sequence logo generator[J]. Genome Res, 2004, 14(6): 1188-1190.
doi: 10.1101/gr.849004 pmid: 15173120 |
[38] |
Bolser D, Staines DM, Pritchard E, et al. Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data[J]. Methods Mol Biol, 2016, 1374: 115-140.
doi: 10.1007/978-1-4939-3167-5_6 pmid: 26519403 |
[39] |
Chen CJ, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8): 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[40] | 江倩倩, 王雨婷, 惠竹梅. 葡萄BZR基因家族的鉴定及表达分析[J]. 植物生理学报, 2021, 57(6): 1218-1228. |
Jiang QQ, Wang YT, Hui ZM. Identification and expression analysis of BZR gene family in grapevine[J]. Plant Physiol J, 2021, 57(6): 1218-1228. | |
[41] | Manoli A, Trevisan S, Quaggiotti S, et al. Identification and characterization of the BZR transcription factor family and its expression in response to abiotic stresses in Zea mays L[J]. Plant Growth Regul, 2018, 84(3): 423-436. |
[42] | Sarwar R, Geng R, Li L, et al. Genome-wide prediction, functional divergence, and characterization of stress-responsive BZR transcription factors in B. napus[J]. Front Plant Sci, 2022, 12: 790655. |
[43] | Li YY, He LL, Li J, et al. Genome-wide identification, characterization, and expression profiling of the legume BZR transcription factor gene family[J]. Front Plant Sci, 2018, 9: 1332. |
[44] | Cao X, Khaliq A, Lu S, et al. Genome-wide identification and characterization of the BES1 gene family in apple(Malus domestica)[J]. Plant Biol, 2020, 22(4): 723-733. |
[45] | Song XM, Ma X, Li CJ, et al. Comprehensive analyses of the BES1 gene family in Brassica napus and examination of their evolutionary pattern in representative species[J]. BMC Genomics, 2018, 19(1): 346. |
[1] | 张明亚, 庞胜群, 刘玉东, 苏永峰, 牛博文, 韩琼琼. 番茄FAD基因家族的鉴定与表达分析[J]. 生物技术通报, 2024, 40(7): 150-162. |
[2] | 李博静, 郑腊梅, 吴乌云, 高飞, 周宜君. 西蒙得木HSP20基因家族的进化、表达和功能分析[J]. 生物技术通报, 2024, 40(6): 190-202. |
[3] | 王健, 杨莎, 孙庆文, 陈宏宇, 杨涛, 黄园. 金钗石斛bHLH转录因子家族全基因组鉴定及表达分析[J]. 生物技术通报, 2024, 40(6): 203-218. |
[4] | 王迪, 张晓宇, 宋宇鑫, 郑东然, 田静, 李玉花, 王宇, 吴昊. 细胞全能性转录因子调控植物组培再生的分子机制研究进展[J]. 生物技术通报, 2024, 40(6): 23-33. |
[5] | 李梦然, 叶伟, 李赛妮, 张维阳, 李建军, 章卫民. Lithocarols类化合物生物合成基因litI的表达及其启动子功能分析[J]. 生物技术通报, 2024, 40(6): 310-318. |
[6] | 王玉书, 赵琳琳, 赵爽, 胡琦, 白慧霞, 王欢, 曹业萍, 范震宇. 大白菜BrCYP83B1基因的克隆及表达分析[J]. 生物技术通报, 2024, 40(6): 152-160. |
[7] | 张迪, 鞠睿, 李丽梅, 王煜倩, 陈瑞, 王新一. 基于转录因子生物传感器在环境分析中的应用[J]. 生物技术通报, 2024, 40(6): 114-125. |
[8] | 胡雅丹, 伍国强, 刘晨, 魏明. MYB转录因子在调控植物响应逆境胁迫中的作用[J]. 生物技术通报, 2024, 40(6): 5-22. |
[9] | 胡永波, 雷雨田, 杨永森, 陈馨, 林黄昉, 林碧英, 刘爽, 毕格, 申宝营. 黄瓜和南瓜Bcl-2相关抗凋亡家族全基因组鉴定与表达模式分析[J]. 生物技术通报, 2024, 40(6): 219-237. |
[10] | 王秋月, 段鹏亮, 李海笑, 刘宁, 曹志艳, 董金皋. 玉米大斑病菌cDNA文库的构建及转录因子StMR1互作蛋白的筛选[J]. 生物技术通报, 2024, 40(6): 281-289. |
[11] | 阿丽亚·外力, 陈永坤, 克拉热木·克里木江, 王宝庆, 陈凌娜. 核桃SPL基因家族的系统进化和表达分析[J]. 生物技术通报, 2024, 40(6): 180-189. |
[12] | 常雪瑞, 王田田, 王静. 辣椒E2基因家族的鉴定及分析[J]. 生物技术通报, 2024, 40(6): 238-250. |
[13] | 刘蓉, 田闵玉, 李光泽, 谭成方, 阮颖, 刘春林. 甘蓝型油菜REVEILLE家族鉴定及诱导表达分析[J]. 生物技术通报, 2024, 40(6): 161-171. |
[14] | 郝思怡, 张君珂, 王斌, 曲朋燕, 李瑞得, 程春振. 香蕉ELF3的克隆与表达分析[J]. 生物技术通报, 2024, 40(5): 131-140. |
[15] | 侯雅琼, 郎红珊, 闻蒙蒙, 谷易云, 朱润洁, 汤晓丽. 猕猴桃AcHSP20基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(5): 167-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||