生物技术通报 ›› 2025, Vol. 41 ›› Issue (5): 267-279.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1053
• 研究报告 • 上一篇
叶柳健1(
), 蒙健宗2(
), 覃福方3, 何双1, 朱绮霞1, 王小虎1, 韦圣博1, 周礼芹1(
)
收稿日期:2024-10-28
出版日期:2025-05-26
发布日期:2025-06-05
通讯作者:
周礼芹,女,博士,研究员,研究方向 :环境微生物学;E-mail: gxkxyzlq@126.com作者简介:叶柳健,男,硕士,工程师,研究方向 :资源微生物学与生物工程;E-mail: yeliujian2022@126.com
基金资助:
YE Liu-jian1(
), MENG Jian-zong2(
), QIN Fu-fang3, HE Shuang1, ZHU Qi-xia1, WANG Xiao-hu1, WEI Sheng-bo1, ZHOU Li-qin1(
)
Received:2024-10-28
Published:2025-05-26
Online:2025-06-05
摘要:
目的 鉴定1株百色野生古茶树林根际高产蛋白酶菌株D2,分析菌株D2的酶学特性及基因组,为进一步应用菌株D2开发农业用途的功能性肥料提供依据。 方法 基于16S rRNA扩增技术和菌落形态鉴定菌株D2,福林法测定蛋白酶的酶活力,二代测序技术对菌株D2的基因组测序并进行生物信息学分析。 结果 鉴定百色野生古茶树林根际高产蛋白酶菌株D2为Stenotrophomonas属的一个新种,与嗜麦芽寡养单胞菌(Stenotrophomonas maltophilia)的亲缘关系最近。菌株D2发酵24 h产生255.73 U/mL的中性蛋白酶以及282.12 U/mL的碱性蛋白酶,总蛋白酶酶活力为544.60 U/mL。菌株D2蛋白酶催化反应的最适温度为50 ℃、最适pH为8,高温对酶活力的影响较大,pH和有机溶剂的影响相对较小,二甲基亚砜处理会提高酶活力。菌株D2基因组的全长为4 599 465 bp,GC含量为66.77%,包含4 176个CDS,71个tRNA,5个rRNA 基因,1个ncRNA。菌株D2基因组还存在丰富的碳水化合物活性酶基因和重金属抗性基因,具有11个Saccharide合成基因簇(占总基因簇的57.89%),作用于38种植物病原菌。 结论 古茶树林菌株D2鉴定为Stenotrophomonas属的一个新种,其产蛋白酶的活力高且酶学性质较好。菌株D2基因组具有丰富的碳水化合物活性酶、重金属抗性、次级代谢产物合成基因簇以及植物病原菌抗病等基因资源。
叶柳健, 蒙健宗, 覃福方, 何双, 朱绮霞, 王小虎, 韦圣博, 周礼芹. 古茶树林菌株D2的鉴定、酶学特性及基因组学分析[J]. 生物技术通报, 2025, 41(5): 267-279.
YE Liu-jian, MENG Jian-zong, QIN Fu-fang, HE Shuang, ZHU Qi-xia, WANG Xiao-hu, WEI Sheng-bo, ZHOU Li-qin. Identification, Enzymatic Characteristics, and Genomic Analysis of Strain D2 from Ancient Tea Forest[J]. Biotechnology Bulletin, 2025, 41(5): 267-279.
图2 野生古茶树林根际高产蛋白酶菌株的鉴定A:菌株D2在脱脂奶粉平板上产生的蛋白水解圈;B:菌株D2在LB平板上的菌落形态;C:菌株D2在液体脱脂奶粉培养基中发酵产蛋白酶的情况
Fig. 2 Identification of high-yield protease-producing strains in the rhizosphere of wild ancient tea forestsA: The protein hydrolysis circle produced by strain D2 on skim milk powder plates. B: The colony morphology of strain D2 on LB agar plates. C: The fermentation of strain D2 to produce protease in liquid skim milk powder medium
| 菌株名称 Strain name | ANI值 ANI value (%) | 菌株名称 Strain name | ANI值 ANI value (%) |
|---|---|---|---|
| Stenotrophomonas maltophilia ISMMS5 | 93.31 | Stenotrophomonas sepilia SM16975 | 92.41 |
| Stenotrophomonas pavanii DSM 25135 | 92.10 | Stenotrophomonas riyadhensis CFS3442 | 91.45 |
| Stenotrophomonas geniculata JCM 13324 | 91.41 | Stenotrophomonas cyclobalanopsidis TPQG1-4 | 87.12 |
| Stenotrophomonas indicatrix WS40 | 86.65 | Stenotrophomonas lactitubi M15 | 86.58 |
| Stenotrophomonas chelatiphaga DSM 21508 | 81.35 | Stenotrophomonas pennii Sa5BUN4 | 81.17 |
| Stenotrophomonas lacuserhaii K32 | 81.16 | Stenotrophomonas tumulicola JCM 30961 | 80.94 |
| Stenotrophomonas rhizophila DSM14405 | 80.76 | Stenotrophomonas aracearum A5588 | 80.73 |
| Stenotrophomonas bentonitica DSM 103927 | 80.72 | Stenotrophomonas nematodicola CPCC 101271 | 80.53 |
| Stenotrophomonas oahuensis A5586 | 80.12 | Stenotrophomonas daejeonensis JCM 16244 | 79.45 |
| Stenotrophomonas acidaminiphila DSM 13117 | 79.19 | Stenotrophomonas nitritireducens DSM 12575 | 79.19 |
表1 菌株D2与Stenotrophomonas属基因组的平均核苷酸一致性(ANI)分析
Table 1 Analysis of average nucleotide identity between strain D2 and the genome of Stenotrophomonas genus
| 菌株名称 Strain name | ANI值 ANI value (%) | 菌株名称 Strain name | ANI值 ANI value (%) |
|---|---|---|---|
| Stenotrophomonas maltophilia ISMMS5 | 93.31 | Stenotrophomonas sepilia SM16975 | 92.41 |
| Stenotrophomonas pavanii DSM 25135 | 92.10 | Stenotrophomonas riyadhensis CFS3442 | 91.45 |
| Stenotrophomonas geniculata JCM 13324 | 91.41 | Stenotrophomonas cyclobalanopsidis TPQG1-4 | 87.12 |
| Stenotrophomonas indicatrix WS40 | 86.65 | Stenotrophomonas lactitubi M15 | 86.58 |
| Stenotrophomonas chelatiphaga DSM 21508 | 81.35 | Stenotrophomonas pennii Sa5BUN4 | 81.17 |
| Stenotrophomonas lacuserhaii K32 | 81.16 | Stenotrophomonas tumulicola JCM 30961 | 80.94 |
| Stenotrophomonas rhizophila DSM14405 | 80.76 | Stenotrophomonas aracearum A5588 | 80.73 |
| Stenotrophomonas bentonitica DSM 103927 | 80.72 | Stenotrophomonas nematodicola CPCC 101271 | 80.53 |
| Stenotrophomonas oahuensis A5586 | 80.12 | Stenotrophomonas daejeonensis JCM 16244 | 79.45 |
| Stenotrophomonas acidaminiphila DSM 13117 | 79.19 | Stenotrophomonas nitritireducens DSM 12575 | 79.19 |
图5 菌株D2的基因组圈图从外到内,第1圈和第4圈代表CDS、tRNA、tmRNA及rRNA在基因组上的位置;第2圈代表GC含量;第3圈代表GC skew;第5圈代表基因组序列位置坐标
Fig. 5 Genomic circle map of the strain D2From outside to inside, the first and fourth circles refer to the positions of CDS, tRNA, tmRNA, and rRNA on the genome. The second circle refer to the GC content. The third circle refers to GC skew. The fifth circle refers to the position coordinates of the genome sequence
图6 D2基因组在基本功能数据库的注释结果菌株D2基因组在COG数据库(A)、GO数据库(B)以及KEGG数据库(C)的注释结果
Fig. 6 Annotated results of D2 genome in basic functional databaseThe annotation results of strain D2 genome in COG database (A), GO database (B), and KEGG database (C)
图7 菌株D2基因组的碳水化合物活性酶注释结果AA:氧化还原酶;CE:碳水化合物酯酶;GH:糖苷水解酶;GT:糖基转移酶;PL:多糖裂解酶;数字代表相应注释到的基因数
Fig. 7 Annotated results of carbohydrate active enzymes in the genome of strain D2AA: Auxiliary activities. CE: Carbohydrate esterases. GH: Glycoside hydrolases. GT: Glycosyl transferases. PL: Polysaccharide lyases. The number indicates the number of genes annotated accordingly
基因簇 Cluster | 类型 Type | 开始 From | 结束 To | 最相似的基因簇 The most similar gene cluster | 相似度 Similarity (%) |
|---|---|---|---|---|---|
| Cluster1 | Saccharide | 74 130 | 97 224 | - | - |
| Cluster2 | NRP-metallophore | 647 251 | 695 618 | 2,3-Dihydroxybenzoylserine | 94 |
| Cluster3 | Lanthipeptide-class-iv | 899 781 | 922 489 | - | - |
| Cluster4 | Saccharide | 1 334 563 | 1 357 469 | O-antigen | 14 |
| Cluster5 | RiPP | 1 703 062 | 1 713 937 | - | - |
| Cluster6 | RiPP | 2 007 614 | 2 018 459 | Entolysin | 6 |
| Cluster7 | Saccharide | 2 038 974 | 2 091 044 | - | - |
| Cluster8 | Fatty acid | 2 161 274 | 2 186 839 | - | - |
| Cluster9 | Fatty acid | 20 535 | 41 893 | - | - |
| Cluster10 | Saccharide | 283 664 | 307 161 | - | - |
| Cluster11 | Saccharide | 321 833 | 365 738 | - | - |
| Cluster12 | Saccharide | 401 738 | 447 486 | Lipopolysaccharide | 54 |
| Cluster13 | Fatty acid | 466 989 | 488 197 | - | - |
| Cluster14 | Saccharide | 583 826 | 601 409 | - | - |
| Cluster15 | Saccharide | 162 130 | 194 883 | Eicoseicosapentaenoic acid | 10 |
| Cluster16 | Saccharide | 137 019 | 166 054 | - | - |
| Cluster17 | Saccharide | 191 650 | 213 743 | - | - |
| Cluster18 | Arylpolyene | 120 542 | 164 144 | APE Vf | 40 |
| Cluster19 | Saccharide | 184 940 | 206 717 | - | - |
表2 菌株D2基因组次级代谢产物基因簇的注释结果
Table 2 Annotated results of the secondary metabolite gene cluster in the genome of strain D2
基因簇 Cluster | 类型 Type | 开始 From | 结束 To | 最相似的基因簇 The most similar gene cluster | 相似度 Similarity (%) |
|---|---|---|---|---|---|
| Cluster1 | Saccharide | 74 130 | 97 224 | - | - |
| Cluster2 | NRP-metallophore | 647 251 | 695 618 | 2,3-Dihydroxybenzoylserine | 94 |
| Cluster3 | Lanthipeptide-class-iv | 899 781 | 922 489 | - | - |
| Cluster4 | Saccharide | 1 334 563 | 1 357 469 | O-antigen | 14 |
| Cluster5 | RiPP | 1 703 062 | 1 713 937 | - | - |
| Cluster6 | RiPP | 2 007 614 | 2 018 459 | Entolysin | 6 |
| Cluster7 | Saccharide | 2 038 974 | 2 091 044 | - | - |
| Cluster8 | Fatty acid | 2 161 274 | 2 186 839 | - | - |
| Cluster9 | Fatty acid | 20 535 | 41 893 | - | - |
| Cluster10 | Saccharide | 283 664 | 307 161 | - | - |
| Cluster11 | Saccharide | 321 833 | 365 738 | - | - |
| Cluster12 | Saccharide | 401 738 | 447 486 | Lipopolysaccharide | 54 |
| Cluster13 | Fatty acid | 466 989 | 488 197 | - | - |
| Cluster14 | Saccharide | 583 826 | 601 409 | - | - |
| Cluster15 | Saccharide | 162 130 | 194 883 | Eicoseicosapentaenoic acid | 10 |
| Cluster16 | Saccharide | 137 019 | 166 054 | - | - |
| Cluster17 | Saccharide | 191 650 | 213 743 | - | - |
| Cluster18 | Arylpolyene | 120 542 | 164 144 | APE Vf | 40 |
| Cluster19 | Saccharide | 184 940 | 206 717 | - | - |
重金属名称 Heavy metal name | 抗性基因种类 Resistance gene type | 基因数 Gene count |
|---|---|---|
| 锑Antimony (Sb) | adeJ | 1 |
| 砷Arsenic (As) | adeK, aioR; aoxR, chrC, baeR, baeS, bcr | 11 |
| 铋Bismuth (Bi) | corC | 2 |
| 镉Cadmium (Cd) | corR, corS, crdR, cutC | 7 |
| 铬Chromium (Cr) | dsbC, emhA | 2 |
| 钴Cobalt (Co) | emhB, mvrC, emrE, evgA, evgS, fabL, ygaA, fabV, fbpC | 20 |
| 铜Copper (Cu) | fecD, fecE, fptA, fpvA, frnE, gesA, gesB, golS, irlS, telA, kilB, klaB, cnrB, mdeA, yhiU, mdtE, yjcR, mdtN, mepA, merA, mexD, mexF, mexJ, mexT, mexV, mntH, yfeP | 36 |
| 金Gold (Au) | nikE | 3 |
| 铁Iron (Fe) | pstB, nrsS, oprJ, cnrX, cnr, ruvB, ostA, lptD, PA0320, pcoB, pcoR, pitA, pstA | 10 |
| 铅Lead (Pb) | pstC | 1 |
| 汞Mercury (Hg) | smdA, silS | 4 |
| 镍Nickel (Ni) | smrA, smfY | 9 |
| 银Silver (Ag) | znuC, yebM, hydH, zraR, zraS, hydG, ygiE, zupT | 6 |
| 钨Tungsten (W) | modA, modB, wtpC, tupC, copS, copR, mgtA, corD, mdtB, merA | 15 |
| 锌Zinc (Zn) | bcrA, sodB, chtR, arsT, copR, copS, copA, tcrY | 9 |
表3 菌株D2的重金属抗性功能注释结果
Table 3 Annotated results of heavy metal resistance function of strain D2
重金属名称 Heavy metal name | 抗性基因种类 Resistance gene type | 基因数 Gene count |
|---|---|---|
| 锑Antimony (Sb) | adeJ | 1 |
| 砷Arsenic (As) | adeK, aioR; aoxR, chrC, baeR, baeS, bcr | 11 |
| 铋Bismuth (Bi) | corC | 2 |
| 镉Cadmium (Cd) | corR, corS, crdR, cutC | 7 |
| 铬Chromium (Cr) | dsbC, emhA | 2 |
| 钴Cobalt (Co) | emhB, mvrC, emrE, evgA, evgS, fabL, ygaA, fabV, fbpC | 20 |
| 铜Copper (Cu) | fecD, fecE, fptA, fpvA, frnE, gesA, gesB, golS, irlS, telA, kilB, klaB, cnrB, mdeA, yhiU, mdtE, yjcR, mdtN, mepA, merA, mexD, mexF, mexJ, mexT, mexV, mntH, yfeP | 36 |
| 金Gold (Au) | nikE | 3 |
| 铁Iron (Fe) | pstB, nrsS, oprJ, cnrX, cnr, ruvB, ostA, lptD, PA0320, pcoB, pcoR, pitA, pstA | 10 |
| 铅Lead (Pb) | pstC | 1 |
| 汞Mercury (Hg) | smdA, silS | 4 |
| 镍Nickel (Ni) | smrA, smfY | 9 |
| 银Silver (Ag) | znuC, yebM, hydH, zraR, zraS, hydG, ygiE, zupT | 6 |
| 钨Tungsten (W) | modA, modB, wtpC, tupC, copS, copR, mgtA, corD, mdtB, merA | 15 |
| 锌Zinc (Zn) | bcrA, sodB, chtR, arsT, copR, copS, copA, tcrY | 9 |
病原菌种类 Pathogen species | 植物病害 Disease | 宿主种类 Host species | 基因数 Gene count |
|---|---|---|---|
| Agrobacterium vitis | Anthracnose, bacterial blight | Brassica oleracea,Raphanus sativus | 10 |
| Alternaria alternata | Bacterial blight, bacterial grain rot | Citrus sinensis | 1 |
| Botrytis cinerea | Bacterial blight in pelargonium | Citrus reticulata,Glycine max, etc | 4 |
| Burkholderia cenocepacia | Bacterial leaf blight | Brassica oleracea | 2 |
| Burkholderia glumae | Bacterial leaf blight | Medicago sativa, Solanum tuberosum, etc | 8 |
| Claviceps purpurea | Bacterial leaf blight | Malus domestica | 2 |
| Colletotrichum gloeosporioides | Bacterial leaf blight | Malus domestica | 1 |
| Colletotrichum lagenaria | Bacterial leaf blight | Malus domestica | 2 |
| Colletotrichum lindemuthianum | Bacterial leaf blight | Pyrus communis | 1 |
| Colletotrichum orbiculare | Bacterial leaf blight | Malus domestica, Nicotiana tabacum | 1 |
| Dickeya dadantii | Bacterial leaf blight | Pyrus communis, Eriobotrya japonica, etc | 4 |
| Erwinia amylovora | Bacterial leaf blight | Nicotiana tabacum, Pyrus communis, etc | 18 |
| Fusarium graminearum | Bacterial midrib rot, bacterial wilt, etc | Solanum lycopersicum, Cucumis sativus, etc | 22 |
| Fusarium verticillioides | Bacterial wilt | Raphanus sativus | 3 |
| Gaeumannomyces graminis | Bacterial wilt | Raphanus sativus | 1 |
| Leptosphaeria maculans | Bean brown spot | Raphanus sativus | 1 |
| Magnaporthe oryzae | Bean brown spot, black rot | Raphanus sativus, Capsicum annuum, etc | 38 |
| Pantoea ananatis | Black rot disease | Vitis vinifera | 4 |
| Pantoea stewartii | Black rot disease | Solanum lycopersicum, Nicotiana tabacum, etc | 3 |
| Parastagonospora nodorum | Black rot disease | Arabidopsis thaliana, Phaseolus vulgaris, etc | 7 |
| Pectobacterium atrosepticum | Black rot disease | Nicotiana tabacum, Arabidopsis thaliana, etc | 8 |
| Pectobacterium wasabiae | Black rot disease | Citrus × paradisi, Citrus sinensis | 2 |
| Penicillium expansum | Black rot disease | Citrus sinensis | 1 |
| Phytophthora sojae | Black rot of crucifers | Citrus sinensis, Citrus limon, etc | 3 |
| Pseudomonas cichorii | Black rot of crucifers | Solanum lycopersicum, Phaseolus vulgaris | 1 |
| Pseudomonas fluorescens | Black rot of crucifers | Solanum lycopersicum | 1 |
| Pseudomonas syringae | Black rot, brown spot disease, etc | Solanum lycopersicum, Nicotiana tabacum, etc | 13 |
| Ralstonia solanacearum | Citrus canker | Allium cepa, Oryza sativa | 8 |
| Sclerotinia sclerotiorum | Crown gall of grapes | Oryza sativa | 1 |
| Verticillium dahliae | Ear and stalk rot of maize | Oryza sativa | 1 |
| Xanthomonas axonopodis | Ear and stalk rot of maize | Oryza sativa | 1 |
| Xanthomonas campestris | Ergot, Fire blight, etc | Oryza sativa, Allium cepa, etc | 60 |
| Xanthomonas citri | Glume blotch, grey mold, etc | Oryza sativa, Triticum, etc | 14 |
| Xanthomonas hortorum | Nosocomial infections | Oryza sativa, Hordeum vulgare | 2 |
| Xanthomonas oryzae | Pierce's disease, soft rot disease, etc | Oryza sativa, Hordeum vulgare, etc | 80 |
| Xylella fastidiosa | Stem rot, Stewart wilt, etc | Triticum aestivum, Oryza sativa, etc | 6 |
| Zymoseptoria tritici | Vascular wilt, White mold | Zea mays, Triticum aestivum | 4 |
表4 菌株D2与植物病原菌互相作用的分析
Table 4 Analysis of the interaction between strain D2 and plant pathogens
病原菌种类 Pathogen species | 植物病害 Disease | 宿主种类 Host species | 基因数 Gene count |
|---|---|---|---|
| Agrobacterium vitis | Anthracnose, bacterial blight | Brassica oleracea,Raphanus sativus | 10 |
| Alternaria alternata | Bacterial blight, bacterial grain rot | Citrus sinensis | 1 |
| Botrytis cinerea | Bacterial blight in pelargonium | Citrus reticulata,Glycine max, etc | 4 |
| Burkholderia cenocepacia | Bacterial leaf blight | Brassica oleracea | 2 |
| Burkholderia glumae | Bacterial leaf blight | Medicago sativa, Solanum tuberosum, etc | 8 |
| Claviceps purpurea | Bacterial leaf blight | Malus domestica | 2 |
| Colletotrichum gloeosporioides | Bacterial leaf blight | Malus domestica | 1 |
| Colletotrichum lagenaria | Bacterial leaf blight | Malus domestica | 2 |
| Colletotrichum lindemuthianum | Bacterial leaf blight | Pyrus communis | 1 |
| Colletotrichum orbiculare | Bacterial leaf blight | Malus domestica, Nicotiana tabacum | 1 |
| Dickeya dadantii | Bacterial leaf blight | Pyrus communis, Eriobotrya japonica, etc | 4 |
| Erwinia amylovora | Bacterial leaf blight | Nicotiana tabacum, Pyrus communis, etc | 18 |
| Fusarium graminearum | Bacterial midrib rot, bacterial wilt, etc | Solanum lycopersicum, Cucumis sativus, etc | 22 |
| Fusarium verticillioides | Bacterial wilt | Raphanus sativus | 3 |
| Gaeumannomyces graminis | Bacterial wilt | Raphanus sativus | 1 |
| Leptosphaeria maculans | Bean brown spot | Raphanus sativus | 1 |
| Magnaporthe oryzae | Bean brown spot, black rot | Raphanus sativus, Capsicum annuum, etc | 38 |
| Pantoea ananatis | Black rot disease | Vitis vinifera | 4 |
| Pantoea stewartii | Black rot disease | Solanum lycopersicum, Nicotiana tabacum, etc | 3 |
| Parastagonospora nodorum | Black rot disease | Arabidopsis thaliana, Phaseolus vulgaris, etc | 7 |
| Pectobacterium atrosepticum | Black rot disease | Nicotiana tabacum, Arabidopsis thaliana, etc | 8 |
| Pectobacterium wasabiae | Black rot disease | Citrus × paradisi, Citrus sinensis | 2 |
| Penicillium expansum | Black rot disease | Citrus sinensis | 1 |
| Phytophthora sojae | Black rot of crucifers | Citrus sinensis, Citrus limon, etc | 3 |
| Pseudomonas cichorii | Black rot of crucifers | Solanum lycopersicum, Phaseolus vulgaris | 1 |
| Pseudomonas fluorescens | Black rot of crucifers | Solanum lycopersicum | 1 |
| Pseudomonas syringae | Black rot, brown spot disease, etc | Solanum lycopersicum, Nicotiana tabacum, etc | 13 |
| Ralstonia solanacearum | Citrus canker | Allium cepa, Oryza sativa | 8 |
| Sclerotinia sclerotiorum | Crown gall of grapes | Oryza sativa | 1 |
| Verticillium dahliae | Ear and stalk rot of maize | Oryza sativa | 1 |
| Xanthomonas axonopodis | Ear and stalk rot of maize | Oryza sativa | 1 |
| Xanthomonas campestris | Ergot, Fire blight, etc | Oryza sativa, Allium cepa, etc | 60 |
| Xanthomonas citri | Glume blotch, grey mold, etc | Oryza sativa, Triticum, etc | 14 |
| Xanthomonas hortorum | Nosocomial infections | Oryza sativa, Hordeum vulgare | 2 |
| Xanthomonas oryzae | Pierce's disease, soft rot disease, etc | Oryza sativa, Hordeum vulgare, etc | 80 |
| Xylella fastidiosa | Stem rot, Stewart wilt, etc | Triticum aestivum, Oryza sativa, etc | 6 |
| Zymoseptoria tritici | Vascular wilt, White mold | Zea mays, Triticum aestivum | 4 |
| 1 | 赵红艳. 古茶树资源的价值和保护 [J]. 云南农业, 2022(6): 12-14. |
| Zhao HY. The value and protection of ancient tea tree resources [J]. Yunnan Agric, 2022(6): 12-14. | |
| 2 | 叶靖平, 林朝赐, 李良活, 等. 凌云白毫野生茶树种群调查初报 [J]. 中国茶叶, 2014, 36(4): 19-20. |
| Ye JP, Lin C/Z)C, Li LH, et al. Preliminary report on the population survey of wild tea trees in Lingyun Baihao [J]. China Tea, 2014, 36(4): 19-20. | |
| 3 | 胡志宏, 周泳臣, 卢仁龙, 等. 百色市野生茶树资源保护与开发利用研究 [J]. 广东茶业, 2023(6): 36-38. |
| Hu ZH, Zhou YC, Lu RL, et al. Research on the protection, development and utilization of wild tea tree resources in Baise City [J]. Guangdong Tea Ind, 2023(6): 36-38. | |
| 4 | Darbandi A, Elahi Z, Dadgar-Zankbar L, et al. Application of microbial enzymes in medicine and industry: current status and future perspectives [J]. Future Microbiol, 2024, 19(16): 1419-1437. |
| 5 | Song P, Zhang X, Wang SH, et al. Microbial proteases and their applications [J]. Front Microbiol, 2023, 14: 1236368. |
| 6 | Shad AA, Ahmad T, Iqbal MF, et al. Production, partial purification and characterization of protease through response surface methodology by Bacillus subtilis K-5 [J]. Braz Arch Biol Technol, 2024, 67: e24210355. |
| 7 | Zhao K, Liu HY, Song W, et al. Combinatorial mutagenesis of Bacillus amyloliquefaciens for efficient production of protease [J]. Syst Microbiol Biomanuf, 2023, 3(3): 457-468. |
| 8 | Humaira, Deba F, Shakir HA, et al. Optimization of protease production using Bacillus velezensis through response surface methodology and investigating its applications as stain remover [J]. Syst Microbiol Biomanuf, 2024, 4(4): 1313-1322. |
| 9 | Espoui AH, Larimi SG, Darzi GN. Optimization of protease production process using bran waste using Bacillus licheniformis [J]. Korean J Chem Eng, 2022, 39(3): 674-683. |
| 10 | Hashmi S, Iqbal S, Ahmed I, et al. Production, optimization, and partial purification of alkali-thermotolerant proteases from newly isolated Bacillus subtilis S1 and Bacillus amyloliquefaciens KSM12 [J]. Processes, 2022, 10(6): 1050. |
| 11 | Jiang C, Ye CW, Liu YF, et al. Genetic engineering for enhanced production of a novel alkaline protease BSP-1 in Bacillus amyloliquefaciens [J]. Front Bioeng Biotechnol, 2022, 10: 977215. |
| 12 | Liu XF, Lian ML, Zhao MM, et al. Advances in recombinant protease production: current state and perspectives [J]. World J Microbiol Biotechnol, 2024, 40(5): 144. |
| 13 | 陈铭泽. 鲤鱼鳞水解制备含氨基酸水溶肥的工艺筛选及肥效验证 [D]. 武汉: 华中农业大学, 2023. |
| Chen MZ. Process screening and effect verification of amino acid containing water-soluble fertilizer produced by hydrolysis of carp scales [D]. Wuhan: Huazhong Agricultural University, 2023. | |
| 14 | 路书山. 菜粕豆粕混合生产氨基酸水溶肥的发酵工艺优化及其肥效评价 [D]. 南京: 南京农业大学, 2021. |
| Lu SS. Optimization of fermentation process and evaluation of fertilizer efficiency for producing amino acid water-soluble fertilizer by mixing rapeseed meal and soybean meal [D]. Nanjing: Nanjing Agricultural University, 2021. | |
| 15 | 徐鹏. 以鱼蛋白胨为底物发酵生产γ-氨基丁酸及应用研究 [D]. 杭州: 浙江大学, 2023. |
| Xu P. Gamma-aminobutyric acid fermentation technology using fish peptone as substrate and the applications [D]. Hangzhou: Zhejiang University, 2023. | |
| 16 | Li QX. Perspectives on converting keratin-containing wastes into biofertilizers for sustainable agriculture [J]. Front Microbiol, 2022, 13: 918262. |
| 17 | 张明一, 孙庆杰, 杨洁. 芽孢杆菌蛋白酶在食品工业中的应用研究进展 [J]. 食品工业科技, 2024, 45(13): 352-359. |
| Zhang MY, Sun QJ, Yang J. Applications of Bacillus proteases in the food industry: a review [J]. Sci Technol Food Ind, 2024, 45(13): 352-359. | |
| 18 | Wang JR, Xing JY, Lu JK, et al. Complete genome sequencing of Bacillus velezensis WRN014, and comparison with genome sequences of other Bacillus velezensis strains [J]. J Microbiol Biotechnol, 2019, 29(5): 794-808. |
| 19 | Meesil W, Muangpat P, Sitthisak S, et al. Genome mining reveals novel biosynthetic gene clusters in entomopathogenic bacteria [J]. Sci Rep, 2023, 13(1): 20764. |
| 20 | Lagzian A, Riseh RS, Sarikhan S, et al. Genome mining conformance to metabolite profile of Bacillus strains to control potato pathogens [J]. Sci Rep, 2023, 13(1): 19095. |
| 21 | 国家市场监督管理总局, 国家标准化管理委员会. 酶制剂质量要求 第1部分:蛋白酶制剂: [S]. 北京: 中国标准出版社, 2023. |
| State Administration for Market Regulation of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Quality requirements for enzyme preparations: Part 1: Protease preparations: [S]. Beijing: Standards Press of China, 2023. | |
| 22 | Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11 [J]. Mol Biol Evol, 2021, 38(7): 3022-3027. |
| 23 | Richter M, Rosselló-Móra R, Oliver Glöckner F, et al. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison [J]. Bioinformatics, 2016, 32(6): 929-931. |
| 24 | Jain C, Rodriguez-R LM, Phillippy AM, et al. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries [J]. Nat Commun, 2018, 9(1): 5114. |
| 25 | Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data [J]. PLoS One, 2012, 7(2): e30619. |
| 26 | Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing [J]. J Comput Biol, 2012, 19(5): 455-477. |
| 27 | Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement [J]. PLoS One, 2014, 9(11): e112963. |
| 28 | Grant JR, Enns E, Marinier E, et al. Proksee: in-depth characterization and visualization of bacterial genomes [J]. Nucleic Acids Res, 2023, 51(W1): W484-W492. |
| 29 | Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J]. Nucleic Acids Res, 1997, 25(17): 3389-3402. |
| 30 | Blin K, Shaw S, Augustijn HE, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation [J]. Nucleic Acids Res, 2023, 51(W1): W46-W50. |
| 31 | Uddin MN, Akter Y, Chowdhury MA, et al. Exploring alkaline serine protease production and characterization in proteolytic bacteria Stenotrophomonas maltophilia: Insights from real-time PCR and fermentation techniques [J]. Biocatal Agric Biotechnol, 2024, 58: 103186. |
| 32 | 徐敬昭, 陈贝, 杜秉海, 等. 一株嗜麦芽寡养单胞菌的分离及其生物学特性 [J]. 生物技术通报, 2019, 35(3): 71-77. |
| Xu JZ, Chen B, Du BH, et al. Isolation and biological characteristics of a Stenotrophomonas maltophilia [J]. Biotechnol Bull, 2019, 35(3): 71-77. | |
| 33 | Sengupta S, Basak P, Ghosh P, et al. Study of nano-hydroxyapatite tagged alkaline protease isolated from Himalayan sub-alpine Forest soil bacteria and role in recalcitrant feather waste degradation [J]. Int J Biol Macromol, 2023, 253(Pt 6): 127317. |
| 34 | Zhao Y, Ding WJ, Xu L, et al. A comprehensive comparative genomic analysis revealed that plant growth promoting traits are ubiquitous in strains of Stenotrophomonas [J]. Front Microbiol, 2024, 15: 1395477. |
| 35 | Sherpa MT, Das S, Najar IN, et al. Draft genome sequence of Stenotrophomonas maltophilia strain P13 gives insight into its protease production and assessment of sulfur and nitrogen metabolism [J]. Curr Res Microb Sci, 2020, 2: 100012. |
| 36 | Younis T, Rahman S, Rahman L, et al. Exploring the impact of endophytic bacteria on mitigating salinity stress in Solanum lycopersicum L [J]. Plant Stress, 2024, 12: 100467. |
| 37 | Sharma P, Pandey R, Chauhan NS. Biofertilizer and biocontrol properties of Stenotrophomonas maltophilia BCM emphasize its potential application for sustainable agriculture [J]. Front Plant Sci, 2024, 15: 1364807. |
| 38 | Zhang SH, Yang GL, Jiang YL. Antibiotic and metal resistance of Stenotrophomonas maltophilia isolates from Eboling permafrost of the Tibetan Plateau [J]. Environ Sci Pollut Res Int, 2023, 30(5): 11798-11810. |
| 39 | Sahu KP, Kumar A, Patel A, et al. Rice blast lesions: an unexplored phyllosphere microhabitat for novel antagonistic bacterial species against Magnaporthe oryzae [J]. Microb Ecol, 2021, 81(3): 731-745. |
| 40 | Aeron A, Dubey RC, Maheshwari DK. Characterization of a plant-growth-promoting non-nodulating endophytic bacterium (Stenotrophomonas maltophilia) from the root nodules of Mucuna utilis var. capitata L. (Safed Kaunch) [J]. Can J Microbiol, 2020, 66(11): 670-677. |
| [1] | 王浩, 曹安妮, 高欣怡, 郭敏亮. 根癌农杆菌甲氧基脱甲基酶Atu1420的酶学特性表征和定向进化[J]. 生物技术通报, 2025, 41(3): 319-329. |
| [2] | 乔烨, 张楠, 杨建花, 张翠英, 朱蕾蕾. 糖磷酸酶的挖掘及其酶学性质研究[J]. 生物技术通报, 2024, 40(7): 299-306. |
| [3] | 於莉军, 王桥美, 彭文书, 严亮, 杨瑞娟. 景迈山古茶园与现代有机茶园根际土壤微生物群落研究[J]. 生物技术通报, 2024, 40(5): 237-247. |
| [4] | 王颢杰, 常栋, 李俊营, 孟颢光, 蒋士君, 周硕野, 崔江宽. 不同生境下烤烟三段式育苗微生物群落变化及抗逆酶活分析[J]. 生物技术通报, 2024, 40(4): 242-254. |
| [5] | 刘佳宁, 李梦, 杨新森, 吴伟, 裴新梧, 袁潜华. 不同水分管理栽培方式对山栏稻根际土壤细菌群落的影响[J]. 生物技术通报, 2024, 40(3): 242-250. |
| [6] | 杨秉乾, 恽辰珂, 常思源, 郭盛, 张森. 丹参药渣木质素降解菌的分离及酶学特性[J]. 生物技术通报, 2024, 40(11): 269-276. |
| [7] | 许沛冬, 易剑锋, 陈迪, 陈浩, 谢丙炎, 赵文军. 组学技术在生防芽胞杆菌的应用进展[J]. 生物技术通报, 2024, 40(10): 208-220. |
| [8] | 王雨晴, 马子奇, 侯嘉欣, 宗钰琪, 郝晗睿, 刘国元, 魏辉, 连博琳, 陈艳红, 张健. 盐胁迫下植物根系分泌物的成分分析与生态功能研究进展[J]. 生物技术通报, 2024, 40(1): 12-23. |
| [9] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
| [10] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
| [11] | 鲁兆祥, 王夕冉, 连新磊, 廖晓萍, 刘雅红, 孙坚. 基于功能宏基因组学挖掘抗生素耐药基因研究进展[J]. 生物技术通报, 2022, 38(9): 17-27. |
| [12] | 张开平, 刘燕丽, 涂绵亮, 李继伟, 吴文标. 烟曲霉A-16产纤维素酶工艺优化及酶学特性[J]. 生物技术通报, 2022, 38(9): 215-225. |
| [13] | 付巧, 林啟兰, 薛强, 熊海容, 王亚伟. N端截短CBM41对枯草芽孢杆菌来源普鲁兰酶酶学性质的影响[J]. 生物技术通报, 2022, 38(6): 245-251. |
| [14] | 王宁, 李蕙秀, 李季, 丁国春. 堆肥调控作物根际微生物组抑制植物病害的研究进展[J]. 生物技术通报, 2022, 38(5): 4-12. |
| [15] | 牛馨, 张莹, 王茂军, 刘文龙, 路福平, 李玉. 解淀粉芽胞杆菌不同整合位点对外源碱性蛋白酶表达的影响[J]. 生物技术通报, 2022, 38(4): 253-260. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||