生物技术通报 ›› 2025, Vol. 41 ›› Issue (5): 280-289.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1043
• 研究报告 • 上一篇
收稿日期:2024-10-25
出版日期:2025-05-26
发布日期:2025-06-05
通讯作者:
蒋凌雁,女,博士,副教授,研究方向 :作物病害绿色防控;E-mail: lyjiang@hainanu.edu.cn作者简介:张吉昌,男,硕士研究生,研究方向 :作物病害绿色防控;E-mail: zjc8805@163.com
基金资助:
ZHANG Ji-chang(
), XU Yun-feng, JIANG Ling-yan(
)
Received:2024-10-25
Published:2025-05-26
Online:2025-06-05
摘要:
目的 蜡样芽胞杆菌(Bacillus cereus)拮抗菌株ZW21对柱花草炭疽病菌有较大的生防潜力,为获得菌株ZW21的最优发酵条件,提升其活性次级代谢产物的产量,增强对柱花草炭疽病(Stylo anthracnose)的防治效果。 方法 以菌株ZW21的生长量及其发酵滤液抑制柱花草炭疽病菌活性为指标,通过单因素试验筛选培养基组分、正交试验确定其最佳组合;采用单因素试验对发酵条件(pH值、转速、温度、接种量、装液量和发酵时间)逐项进行优化;测定优化后无菌发酵液在不同温度、紫外线照射时间、酸碱环境和蛋白酶处理下的稳定性;通过温室盆栽实验,对比优化前后发酵液对柱花草炭疽病的防治效果。 结果 菌株ZW21的最优培养基配方为0.5%可溶性淀粉、1%苯丙氨酸、0.5%硫酸镁,最适发酵条件为初始pH值4、转速180 r/min、温度28 ℃、装液量200 mL、接种量7%、发酵时间96 h;无菌发酵液可耐受100 ℃高温,紫外线照射8 h抑菌活性不受影响,不受胃蛋白酶、胰蛋白酶的影响,耐强酸,但不耐强碱;与优化前LB发酵液相比,优化后发酵液抑菌活性提高了约10倍,对柱花草炭疽病的防效提高了4倍。 结论 菌株ZW21发酵液稳定性良好,优化后发酵液的OD600值与抑菌率分别为7.05与73.18%,对柱花草炭疽病的防效达到62.5%。
张吉昌, 许云凤, 蒋凌雁. 柱花草内生细菌ZW21发酵条件优化及其抑菌物质稳定性测定[J]. 生物技术通报, 2025, 41(5): 280-289.
ZHANG Ji-chang, XU Yun-feng, JIANG Ling-yan. Optimization of Fermentation Conditions of Endophytic Bacterium ZW21 Isolated from Stylosanthes and Stability Analysis of Antimicrobial Substances[J]. Biotechnology Bulletin, 2025, 41(5): 280-289.
编号 No. | 因素 Factor | ||
|---|---|---|---|
可溶性淀粉 Soluble starch(A)(%) | 苯丙氨酸 L-phenylalanine(B)(%) | 硫酸镁 MgSO4(C)(%) | |
| 1 | 0.25 | 0.5 | 0.5 |
| 2 | 0.5 | 1 | 1 |
| 3 | 1 | 1.5 | 1.5 |
表1 正交试验因素
Table 1 Factors of orthogonal test
编号 No. | 因素 Factor | ||
|---|---|---|---|
可溶性淀粉 Soluble starch(A)(%) | 苯丙氨酸 L-phenylalanine(B)(%) | 硫酸镁 MgSO4(C)(%) | |
| 1 | 0.25 | 0.5 | 0.5 |
| 2 | 0.5 | 1 | 1 |
| 3 | 1 | 1.5 | 1.5 |
图2 碳源、氮源和无机盐种类对菌株ZW21生长量及无菌发酵液抑菌活性的影响不同小写字母表示在0.05水平差异显著。下同
Fig. 2 Effects of carbon sources, nitrogen sources and types of inorganic salts on the growth of strain ZW21 and the antibacterial activity of its sterile fermentation brothDifferent lowercase letters indicate significant difference between treatments at 0.05 level. The same below
编号 No. | 因素 Factor | 抑菌率 Inhibition rate (%) | OD600 | ||
|---|---|---|---|---|---|
可溶性淀粉 Soluble starch (A) (%) | 苯丙氨酸 L-Phenylalanine (B) (%) | 硫酸镁 MgSO4 (C) (%) | |||
| 1 | 0.25 | 0.5 | 0.5 | 41.53±4.65d | 5.5±0.18b |
| 2 | 0.25 | 1 | 1.5 | 46.82±2.14cd | 4.96±0.11b |
| 3 | 0.25 | 1.5 | 1 | 51.181.62bcd | 4.44±0.14b |
| 4 | 0.5 | 0.5 | 1 | 52.82±0.71bcd | 5.49±0.21b |
| 5 | 0.5 | 1 | 0.5 | 65.76±1.45a | 7.44±0.23a |
| 6 | 0.5 | 1.5 | 1.5 | 61.18±2.78ab | 6.25±0.14a |
| 7 | 1 | 0.5 | 1.5 | 44.94±4.4d | 5.8±0.07b |
| 8 | 1 | 1 | 1 | 58.24±1.7abc | 7.19±0.16a |
| 9 | 1 | 1.5 | 0.5 | 57.41±0.68abc | 7.06±0.44a |
| K1 | 418.59 | 417.87 | 494.1 | ||
| K2 | 539.28 | 512.46 | 486.72 | ||
| K3 | 481.77 | 509.31 | 458.82 | ||
| k1 | 46.51 | 46.43 | 54.9 | ||
| k2 | 59.92 | 56.94 | 54.08 | ||
| k3 | 53.53 | 56.59 | 50.98 | ||
| R | 13.41 | 10.51 | 3.92 | ||
| K1′ | 44.7 | 50.37 | 60 | ||
| K2′ | 57.54 | 58.77 | 51.37 | ||
| K3′ | 60.15 | 53.25 | 51.03 | ||
| k1′ | 4.97 | 5.6 | 6..67 | ||
| k2′ | 6.39 | 6.53 | 5.71 | ||
| k3′ | 6.68 | 5.92 | 5.67 | ||
| R | 1.72 | 0.93 | 1 | ||
表2 菌株ZW21营养条件正交试验结果
Table 2 Results of orthogonal test on nutritional conditions of strain ZW21
编号 No. | 因素 Factor | 抑菌率 Inhibition rate (%) | OD600 | ||
|---|---|---|---|---|---|
可溶性淀粉 Soluble starch (A) (%) | 苯丙氨酸 L-Phenylalanine (B) (%) | 硫酸镁 MgSO4 (C) (%) | |||
| 1 | 0.25 | 0.5 | 0.5 | 41.53±4.65d | 5.5±0.18b |
| 2 | 0.25 | 1 | 1.5 | 46.82±2.14cd | 4.96±0.11b |
| 3 | 0.25 | 1.5 | 1 | 51.181.62bcd | 4.44±0.14b |
| 4 | 0.5 | 0.5 | 1 | 52.82±0.71bcd | 5.49±0.21b |
| 5 | 0.5 | 1 | 0.5 | 65.76±1.45a | 7.44±0.23a |
| 6 | 0.5 | 1.5 | 1.5 | 61.18±2.78ab | 6.25±0.14a |
| 7 | 1 | 0.5 | 1.5 | 44.94±4.4d | 5.8±0.07b |
| 8 | 1 | 1 | 1 | 58.24±1.7abc | 7.19±0.16a |
| 9 | 1 | 1.5 | 0.5 | 57.41±0.68abc | 7.06±0.44a |
| K1 | 418.59 | 417.87 | 494.1 | ||
| K2 | 539.28 | 512.46 | 486.72 | ||
| K3 | 481.77 | 509.31 | 458.82 | ||
| k1 | 46.51 | 46.43 | 54.9 | ||
| k2 | 59.92 | 56.94 | 54.08 | ||
| k3 | 53.53 | 56.59 | 50.98 | ||
| R | 13.41 | 10.51 | 3.92 | ||
| K1′ | 44.7 | 50.37 | 60 | ||
| K2′ | 57.54 | 58.77 | 51.37 | ||
| K3′ | 60.15 | 53.25 | 51.03 | ||
| k1′ | 4.97 | 5.6 | 6..67 | ||
| k2′ | 6.39 | 6.53 | 5.71 | ||
| k3′ | 6.68 | 5.92 | 5.67 | ||
| R | 1.72 | 0.93 | 1 | ||
图3 不同发酵条件对菌株ZW21生长量及无菌发酵液抑菌活性的影响
Fig. 3 Effects of different fermentation conditions on the growth of strain ZW21 and the inhibitory activity of sterile fermentation filtrate
图5 菌株 ZW21 无菌发酵液抑菌活性对比A:空白对照;B:优化前发酵滤液;C:优化后发酵滤液
Fig. 5 Comparison of inhibition activity of strain ZW21 fermentation filtrateA: Blank control; B: fermentation filtrate before optimization; C: optimized fermentation filtrate
图6 喷施 ZW21 优化前后发酵液盆栽防治效果比较A:对照(接种炭疽菌);B:外施优化前发酵液后接种炭疽菌;C:外施优化后发酵液后接种炭疽菌
Fig. 6 Comparison of control effects of potted plant sprayed with fermentation liquids before and after ZW21 optimizedA: Control (inoculation of C. gloeosproioides only); B: treatment of unoptimized fermentation filtrate before inoculation of C. gloeosporioides; C: treatment of optimized fermentation filtrate before inoculation of C. gloeosporioides
| 10 | 王宝, 严婉荣, 肖彤斌, 等. 海南辣椒尖孢镰刀菌拮抗内生细菌的分离与鉴定 [J]. 分子植物育种, 2023, 21(20): 6767-6775. |
| Wang B, Yan WR, Xiao TB, et al. Isolation and identification of antagonistic endophyte bacteria against Fusarium oxysporum from Hainan pepper [J]. Mol Plant Breed, 2023, 21(20): 6767-6775. | |
| 11 | Jiao R, Ahmed A, He PF, et al. Bacillus amyloliquefaciens induces resistance in tobacco against powdery mildew pathogen Erysiphe cichoracearum [J]. J Plant Growth Regul, 2023, 42(10): 6636-6651. |
| 12 | 李统华, 冯中红, 杨成德. 高寒草甸牧草内生解淀粉芽孢杆菌261MY6生防潜力评价 [J]. 草地学报, 2019, 27(2): 452-458. |
| Li TH, Feng ZH, Yang CD. Evaluation of eiocontrol potential of endophytic Bacillus amyloliquefaciens 261MY6 in alpine pasture [J]. Acta Agrestia Sin, 2019, 27(2): 452-458. | |
| 13 | 杨苔, 于慧颖, 卢立明, 等. 促生潜力玉米种子内生细菌分离鉴定及发酵条件优化 [J]. 中国农学通报, 2023, 39(9): 16-23. |
| Yang T, Yu HY, Lu LM, et al. Endophytic bacteria from maize seed with growth-promoting potential: isolation, identification and optimization of fermentation conditions [J]. Chin Agric Sci Bull, 2023, 39(9): 16-23. | |
| 14 | 申云鑫, 施竹凤, 周旭东, 等. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究 [J]. 生物技术通报, 2023, 39(3): 267-277. |
| Shen YX, Shi ZF, Zhou XD, et al. Isolation, identification and bio-activity of three Bacillus strains with biocontrol function [J]. Biotechnol Bull, 2023, 39(3): 267-277. | |
| 15 | 许云凤. 柱花草种子内生拮抗菌的筛选、鉴定及防效 [D]. 海口:海南大学, 2024. |
| Xu YF. Screening, Identification and control efficacy of Endophytic antagonistic bacteria in Stylosanthes seeds [D]. Haikou: Hainan University, 2024. | |
| 16 | Kelemu S, Skinner DZ, Badel JL, et al. Genetic diversity in south American Colletotrichum gloeosporioides isolates from Stylosanthes guianensis, a tropical forage legume [J]. Eur J Plant Pathol, 1999, 105(3): 261-272. |
| 17 | 陈学新, 杜永均, 黄健华, 等. 我国作物病虫害生物防治研究与应用最新进展 [J]. 植物保护, 2023, 49(5): 340-370. |
| Chen XX, Du YJ, Huang JH, et al. Recent progresses in biological control of crop pathogens and insect pests in China [J]. Plant Prot, 2023, 49(5): 340-370. | |
| 18 | Gao FY, Zhou XS, Yang DJ, et al. Potential utility of Bacillus amyloliquefaciens SFB-1 as a biocontrol agent for sweetpotato black rot caused by Ceratocystis fimbriata [J]. Genes, 2024, 15(12): 1540. |
| 19 | Khan AR, Mustafa A, Hyder S, et al. Bacillus spp. as bioagents: uses and application for sustainable agriculture [J]. Biology, 2022, 11(12): 1763. |
| 20 | 赵新贝, 王娟, 上官妮妮, 等. 番茄灰霉病生防细菌TD-7的鉴定、发酵条件优化及其防治效果 [J]. 中国生物防治学报, 2019, 35(2): 226-239. |
| Zhao XB, Wang J, Shangguan NN, et al. Identification, fermentation condition optimization and control efficiency of biocontrol bacterium TD-7 against the tomato grey mould [J]. Chin J Biol Contr, 2019, 35(2): 226-239. | |
| 21 | Tsalgatidou PC, Thomloudi EE, Delis C, et al. Compatible consortium of endophytic Bacillus halotolerans strains Cal.l.30 and Cal.f.4 promotes plant growth and induces systemic resistance against Botrytis cinerea [J]. Biology, 2023, 12(6): 779. |
| 22 | 曹灏, 陈智磊, 李雪松, 等. 贝莱斯芽孢杆菌TCS001悬浮剂配方优化及对草莓炭疽病的防治效果 [J]. 农药学学报, 2024, 26(5): 911-921. |
| Cao H, Chen ZL, Li XS, et al. Optimization of the formulation for Bacillus velezensis TCS001 suspension and its control efficacy on strawberry anthracnose [J]. Chin J Pestic Sci, 2024, 26(5): 911-921. | |
| 23 | Wu YZ, Tan YM, Peng QJ, et al. Biocontrol potential of endophytic bacterium Bacillus altitudinis GS-16 against tea anthracnose caused by Colletotrichum gloeosporioides [J]. PeerJ, 2024, 12: e16761. |
| 24 | 马俊秀, 吴皓琼, 姜威, 等. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究 [J]. 生物技术通报, 2023, 39(7): 228-240. |
| Ma JX, Wu HQ, Jiang W, et al. Screening and identification of broad-spectrum antagonistic bacterial strains against vegetable soft rot pathogen and its control effects [J]. Biotechnol Bull, 2023, 39(7): 228-240. | |
| 25 | Zhang XY, Yue QR, Xin Y, et al. The biocontrol potentiality of Bacillus amyloliquefaciens against postharvest soft rot of tomatoes and insights into the underlying mechanisms [J]. Postharvest Biol Technol, 2024, 214: 112983. |
| 26 | Tao H, Li XY, Huo HZ, et al. Bacillus velezensis Y6, a potential and efficient biocontrol agent in control of rice sheath blight caused by Rhizoctonia solani [J]. Microorganisms, 2024, 12(8): 1694. |
| 27 | 程亮亮, 叶磊, 王文凯, 等. 小麦纹枯病拮抗菌HB-10的筛选及其发酵条件优化 [J]. 中国生物防治学报, 2024, 40(2): 435-447. |
| Cheng LL, Ye L, Wang WK, et al. Screening of antagonistic bacterium HB-10 against wheat sheath blight and optimization of fermentation conditions [J]. Chin J Biol Contr, 2024, 40(2): 435-447. | |
| 28 | 梁艳琼, 吴伟怀, 习金根, 等. 生防菌JNC2对柱花草炭疽病的生防效果及其机理作用 [J]. 基因组学与应用生物学, 2020, 39(12): 5567-5573. |
| Liang YQ, Wu WH, Xi JG, et al. Biocontrol effects and mechanism of antagonistic bacterial strain JNC2 against Colletotrichum gloeosporioides on Stylosanthes [J]. Genom Appl Biol, 2020, 39(12): 5567-5573. | |
| 29 | 张强, 吴利民, 李朋燕, 等. 小麦茎基腐病拮抗菌发酵条件优化及稳定性评价 [J]. 河南农业科学, 2023, 52(5): 121-129. |
| Zhang Q, Wu LM, Li PY, et al. Optimization of fermentation conditions and stability evaluation of antagonistic bacteria against wheat crown rot [J]. J Henan Agric Sci, 2023, 52(5): 121-129. | |
| 30 | 秦楠, 任璐, 吕红, 等. 藜麦内生细菌LS3发酵条件优化及其抑菌机制初探 [J]. 山西农业科学, 2023, 51(10): 1210-1218. |
| Qin N, Ren L, Lü H, et al. Optimization of fermentation conditions and inhibitory mechanism of endophytic bacteria LS3 in quinoa [J]. J Shanxi Agric Sci, 2023, 51(10): 1210-1218. | |
| 31 | 黄慧婧, 高香辉, 陈舒, 等. 一株番茄青枯病菌拮抗细菌的筛选、发酵条件优化及田间小区防效 [J]. 微生物学通报, 2022, 49(2): 606-619. |
| Huang HJ, Gao XH, Chen S, et al. Screening, fermentation condition optimization, and field control effect evaluation of an antagonistic bacterium against Ralstonia solanacearum [J]. Microbiol China, 2022, 49(2): 606-619. | |
| 32 | 张金奎, 徐生军, 李继平, 等. 生防细菌HMQ20YJ04发酵条件优化及其对番茄灰霉病的效果评价 [J]. 中国生物防治学报, 2023, 39(6): 1418-1433. |
| Zhang JK, Xu SJ, Li JP, et al. Optimization of fermentation conditions of biocontrol bacteria HMQ20YJ04 and evaluation of its effect on Botrytis cinerea [J]. Chin J Biol Contr, 2023, 39(6): 1418-1433. | |
| 33 | Cao H, Chen ZL, Li XS, et al. Optimization of fermentation conditions for Bacillus velezensis TCS001 and evaluation of its growth promotion and disease prevention effects on strawberries [J]. Biol Contr, 2024, 198: 105632. |
| 34 | Gu XH, Zheng LN, Zhai QH, et al. Optimization of fermentation medium for biocontrol strain Pantoea jilinensis D25 and preparation of its microcapsules [J]. Process Biochem, 2022, 121: 216-227. |
| 35 | 尹向田, 杨阳. 甲基营养型芽孢杆菌GSBM05产抗菌活性物质发酵条件优化 [J]. 江苏农业科学, 2018, 46(20): 89-93. |
| Yin XT, Yang Y. Optimization of fermentation conditions of antibacterial substance produced by Bacillus methylotrophicus GSBM05 [J]. Jiangsu Agric Sci, 2018, 46(20): 89-93. | |
| 36 | 李颖, 金鑫, 沙海天, 等. 枯草芽孢杆菌SH-1发酵条件优化及抑菌活性物质稳定性研究 [J]. 食品科技, 2016, 41(9): 25-29. |
| Li Y, Jin X, Sha HT, et al. Optimization of fermentation conditions of Bacillus subtilis SH-1 and stability of antimicrobial substances [J]. Food Sci Technol, 2016, 41(9): 25-29. | |
| 37 | 田凤鸣, 陈强, 何九军, 等. 一株花椒根腐病拮抗菌的筛选、发酵条件及其抑菌物质的初步分析 [J]. 微生物学通报, 2023, 50(7): 2950-2969. |
| Tian FM, Chen Q, He JJ, et al. A biocontrol bacterial strain against Zanthoxylum bungeanum root rot: screening, fermentation condition optimization, and preliminary identification of antimicrobial ingredients [J]. Microbiol China, 2023, 50(7): 2950-2969. | |
| 38 | 路妍, 杨鑫, 吴文庆, 等. 枯草芽孢杆菌S-16产抗菌蛋白发酵条件优化及蛋白分离纯化 [J]. 江苏农业科学, 2021, 49(2): 63-70. |
| Lu Y, Yang X, Wu WQ, et al. Optimization of fermentation conditions and purification of antagonistic proteins produced by Bacillus subtilis strain S-16 [J]. Jiangsu Agric Sci, 2021, 49(2): 63-70. | |
| 1 | Jia YX, Yang MX, Wang H, et al. First report of anthracnose on Stylosanthes guianensis caused by Colletotrichum karstii in China [J]. Plant Dis, 2017, 101(4): 630. |
| 2 | 郑金龙, 李秋洁, 易克贤, 等. 9种杀菌剂对柱花草胶孢炭疽病菌的室内毒力测定 [J]. 热带农业科学, 2015, 35(2): 66-69. |
| Zheng JL, Li QJ, Yi KX, et al. Toxicity test of nine kinds of fungicides for Collectotrichum gloeosporioides on Stylosanthes anthracnose in laboratory [J]. Chin J Trop Agric, 2015, 35(2): 66-69. | |
| 3 | Arun AT, Pramod R, V RN, et al. Comparative evaluation of different biocontrol agents against anthracnose of nendran banana caused by Colletotrichum musae [J]. J Adv Biol Biotechnol, 2024, 27(6): 302-309. |
| 4 | Reveglia P, Corso G, Evidente A. Advances on bioactive metabolites with potential for the biocontrol of plant pathogenic bacteria [J]. Pathogens, 2024, 13(11): 1000. |
| 5 | Hossain MI, Sadekuzzaman M, Ha SD. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: a review [J]. Food Res Int, 2017, 100(Pt 1): 63-73. |
| 6 | Qian JY, Wang YZ, Hu ZJ, et al. Bacillus sp. as a microbial cell factory: Advancements and future prospects [J]. Biotechnol Adv, 2023, 69: 108278. |
| 7 | 姚福田, 刘晓峰, 赵晓军, 等. 醉鱼草内生细菌ZJ1发酵条件优化及其抑菌物质稳定性分析 [J]. 山西农业科学, 2022, 50(9): 1345-1352. |
| Yao FT, Liu XF, Zhao XJ, et al. Optimization of fermentation conditions and stability analysis of antimicrobial substances of endophytic bacteria ZJ1 isolated from Buddleja lindleyana fortune [J]. J Shanxi Agric Sci, 2022, 50(9): 1345-1352. | |
| 8 | Cheng C, Su SF, Bo SL, et al. A Bacillus velezensis strain isolated from oats with disease-preventing and growth-promoting properties [J]. Sci Rep, 2024, 14(1): 12950. |
| 9 | Botlagunta N, Babu S. Growth enhancement and changes in bacterial microbiome of cucumber plants exhibited by biopriming with some native bacteria [J]. Saudi J Biol Sci, 2024, 31(6): 103997. |
| [1] | 陆峰, 黄玉红, 林燕娜, 马富强. CO2还原用甲酸脱氢酶分子改造的研究进展[J]. 生物技术通报, 2025, 41(3): 14-24. |
| [2] | 慕雪男, 吴桐, 郑子薇, 张越, 王志刚, 徐伟慧. 一株番茄青枯病生防细菌的筛选、鉴定及其生防潜力分析[J]. 生物技术通报, 2025, 41(1): 276-286. |
| [3] | 刘倩, 马连杰, 张慧, 王冬, 范茂, 廖敦秀, 赵正武, 卢文才. 辣椒炭疽病生防菌株TN2的筛选鉴定与抑菌效果[J]. 生物技术通报, 2025, 41(1): 287-297. |
| [4] | 张静安, 胡孝龙, 曹蓓蓓, 廖敏, 束长龙, 张杰, 王奎, 操海群. 苏云金芽胞杆菌可视化快速表达载体的构建与特性分析[J]. 生物技术通报, 2025, 41(1): 95-102. |
| [5] | 刘文志, 贺丹, 李鹏, 傅应林, 张译心, 温华杰, 于文清. 多粘类芽胞杆菌新菌株X-11及其对番茄和水稻的促生效应[J]. 生物技术通报, 2024, 40(9): 249-259. |
| [6] | 王美玲, 耿丽丽, 房瑜, 束长龙, 张杰. 苏云金芽胞杆菌4BM1菌株对油菜菌核病的防治潜力[J]. 生物技术通报, 2024, 40(9): 260-269. |
| [7] | 韩钟娆, 霍毅欣, 郭淑元. 芽胞杆菌耐受胁迫条件的机制及工业应用[J]. 生物技术通报, 2024, 40(8): 24-38. |
| [8] | 张阿娜, 韩雪, 谷天一, 辛凤姣, 王钰璐. 利用新型红酵母苯丙氨酸解氨酶制备低苯丙氨酸酪蛋白[J]. 生物技术通报, 2024, 40(8): 309-319. |
| [9] | 王芳, 于璐, 齐泽铮, 周长军, 于吉东. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 2024, 40(7): 216-225. |
| [10] | 范宗强, 冯靖涵, 郑丽雪, 王硕, 彭向前, 陈芳. 枯草芽孢杆菌B579对黄瓜枯萎病的防治及其诱导抗性研究[J]. 生物技术通报, 2024, 40(7): 226-234. |
| [11] | 乔烨, 张楠, 杨建花, 张翠英, 朱蕾蕾. 糖磷酸酶的挖掘及其酶学性质研究[J]. 生物技术通报, 2024, 40(7): 299-306. |
| [12] | 王丹, 赵文江, 齐鑫, 李欣然, 李凯, 樊丽, 李亮. 核糖核酸标准物质研制与应用进展[J]. 生物技术通报, 2024, 40(6): 105-113. |
| [13] | 蒋文萍, 冉秋萍, 刘家书, 张慧敏, 张迪, 江正兵, 李华南. 碳水化合物结合域对木聚糖酶酶学性质的影响[J]. 生物技术通报, 2024, 40(5): 269-279. |
| [14] | 徐伟芳, 李贺宇, 张慧, 何仔昂, 高文恒, 谢紫洋, 王传文, 尹登科. 生防细菌HX0037对栝楼炭疽病的防病能力及其机制[J]. 生物技术通报, 2024, 40(4): 228-241. |
| [15] | 许沛冬, 易剑锋, 陈迪, 潘磊, 谢丙炎, 赵文军. 贝莱斯芽孢杆菌生防次级代谢产物研究进展[J]. 生物技术通报, 2024, 40(3): 75-88. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||