生物技术通报 ›› 2025, Vol. 41 ›› Issue (5): 153-164.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1249
• 研究报告 • 上一篇
彭绍智(
), 王登科, 张祥, 戴雄泽, 徐昊(
), 邹学校(
)
收稿日期:2024-12-24
出版日期:2025-05-26
发布日期:2025-06-05
通讯作者:
徐昊,女,博士,教授,研究方向 :辣椒分子育种;E-mail: haoxuplant@163.com作者简介:彭绍智,男,硕士,研究方向 :辣椒分子育种;E-mail: pp2654481870@163.com基金资助:
PENG Shao-zhi(
), WANG Deng-ke, ZHANG Xiang, DAI Xiong-ze, XU Hao(
), ZOU Xue-xiao(
)
Received:2024-12-24
Published:2025-05-26
Online:2025-06-05
摘要:
目的 探究CaFD1调控辣椒开花时间的分子机制,以及其在应对非生物胁迫反应中的作用,为辣椒的分子育种提供可用的基因资源。 方法 利用RT-PCR技术,从一年生辣椒(Capsicum annuum L.)‘遵辣1号’茎器官的cDNA中克隆出AtFD同源基因CaFD1。借助生物信息学手段,对该基因的理化性质、蛋白结构以及系统进化关系展开分析。利用RT-qPCR技术研究基因在辣椒不同组织以及不同胁迫处理下的表达特征。构建基因沉默载体TRV-CaFD1、过表达载体TRV-CaFD1-OE和亚细胞定位35S∶CaFD1载体,再通过农杆菌侵染法分别转化辣椒和烟草。 结果 CaFD1的ORF长度为711 bp,所含氨基酸数量达236个,预估的分子量约为22.34 kD,理论上的等电点值为7.71。该蛋白属于亲水性蛋白,脂肪族氨基酸指数为70.85,热稳定性较高。CaFD1蛋白中包含2个保守结构域,碱性氨基酸区域N-x9-R和亮氨酸拉链区x6-L-x6-L-x6-L。其二级结构以无规则卷曲为主要特征,还包含少量的α-螺旋。启动子预测分析表明,CaFD1启动子上存在多种激素和胁迫相关的顺式作用元件。RT-qPCR证实CaFD1主要在茎中表达,其次是花,在根中几乎不表达。亚细胞定位实验说明CaFD1蛋白定位在细胞核中。在病毒诱导的基因沉默植株中,沉默CaFD1基因植株出现现蕾天数和开花天数延长的表型,而过表达植株的表型则得到互补。 结论 CaFD1在茎中优势表达,能够促进植物开花,并且对干旱、高盐、ABA与弱光胁迫做出响应。
彭绍智, 王登科, 张祥, 戴雄泽, 徐昊, 邹学校. 辣椒CaFD1基因克隆、表达特征及功能验证[J]. 生物技术通报, 2025, 41(5): 153-164.
PENG Shao-zhi, WANG Deng-ke, ZHANG Xiang, DAI Xiong-ze, XU Hao, ZOU Xue-xiao. Cloning, Expression Characteristics and Functional Verification of the Pepper CaFD1 Gene[J]. Biotechnology Bulletin, 2025, 41(5): 153-164.
| 引物名称 Names of primer | 引物序列 Sequence of primer (5′-3′) | 引物用途 Purpose of primer |
|---|---|---|
| QC-CaFD1_F | ATGTGGTCATCAAGCAGTGACAATAG | CaFD1基因克隆 |
| QC-CaFD1_R | TCAAAATGGGGCGGTTGACG | |
| GBD-CaFD1_F | ATACGTCCTAATCCCATGGAAGAAGTGTGG | 35S:CaFD1载体 |
| GBD-CaFD1_R | CCCTTGCTCACCATGGTACCAAATGGGGCGGTTGACGC | |
| VIGS-CaFD1_F | TAAGGTTACCGAATTCATGGAAGAAGTGTGGAAAGAC | TRV-CaFD1载体 |
| VIGS-CaFD1_R | GCTCGGTACCGGATCCTACTACTTGACAACTATCAGTT | |
| Q-CaFD1_F | AGAACCGTGAGTCTGCTGCT | RT-qPCR |
| Q-CaFD1_R | TCTTGAGCCTGGCATTCTCT | |
| UBI_F | CCACCTCTTCACTCTCTGCTCT | RT-qPCR |
| UBI_R | ACTAGGAAAAAACGCCCTTGGT | |
| RT1_F | TGGCAGGATATATTGTGGTG | TRV_35S:CaFD1_OE载体 |
| RT1_Overlap_R | CCACACTTCTTCCATGGGATTAGGACGTATC | |
| RT2_Overlap_F | ATACGTCCTAATCCCATGGAAGAAGTGTGG | |
| RT2_Overlap_R | CACGTCCTTAAATCCTTACTTGTACAGCTC | |
| RT3_Overlap_F | GAGCTGTACAAGTAAGGATTTAAGGACGTGAACTCTG | |
| RT3_R | GTTTACCCGCCAATATATCCTG |
表1 本研究所用引物序列和名称
Table 1 Primer sequences and names used in this study
| 引物名称 Names of primer | 引物序列 Sequence of primer (5′-3′) | 引物用途 Purpose of primer |
|---|---|---|
| QC-CaFD1_F | ATGTGGTCATCAAGCAGTGACAATAG | CaFD1基因克隆 |
| QC-CaFD1_R | TCAAAATGGGGCGGTTGACG | |
| GBD-CaFD1_F | ATACGTCCTAATCCCATGGAAGAAGTGTGG | 35S:CaFD1载体 |
| GBD-CaFD1_R | CCCTTGCTCACCATGGTACCAAATGGGGCGGTTGACGC | |
| VIGS-CaFD1_F | TAAGGTTACCGAATTCATGGAAGAAGTGTGGAAAGAC | TRV-CaFD1载体 |
| VIGS-CaFD1_R | GCTCGGTACCGGATCCTACTACTTGACAACTATCAGTT | |
| Q-CaFD1_F | AGAACCGTGAGTCTGCTGCT | RT-qPCR |
| Q-CaFD1_R | TCTTGAGCCTGGCATTCTCT | |
| UBI_F | CCACCTCTTCACTCTCTGCTCT | RT-qPCR |
| UBI_R | ACTAGGAAAAAACGCCCTTGGT | |
| RT1_F | TGGCAGGATATATTGTGGTG | TRV_35S:CaFD1_OE载体 |
| RT1_Overlap_R | CCACACTTCTTCCATGGGATTAGGACGTATC | |
| RT2_Overlap_F | ATACGTCCTAATCCCATGGAAGAAGTGTGG | |
| RT2_Overlap_R | CACGTCCTTAAATCCTTACTTGTACAGCTC | |
| RT3_Overlap_F | GAGCTGTACAAGTAAGGATTTAAGGACGTGAACTCTG | |
| RT3_R | GTTTACCCGCCAATATATCCTG |
图2 CaFD1蛋白理化性质分析A:CaFD1蛋白亲水性的预测结果;B:CaFD1蛋白跨膜结构域的预测展示;C:CaFD1蛋白信号肽的预测分析;D:CaFD1蛋白磷酸化位点的预测情形
Fig. 2 Analysis of the CaFD1 protein's physicochemical characteristicsA: Forecasting the hydrophilicity profile for the CaFD1 protein. B: Visual representation of the CaFD1 protein's predicted transmembrane regions. C: Predictive evaluation of the CaFD1 protein's signal peptide. D: Projection of the CaFD1 protein's potential phosphorylation locations
图3 CaFD1与其他植物bZIP蛋白序列比对红色、紫色、蓝色分别代表100%、大于75%和大于50%的相似性;Ca:辣椒;At:拟南芥;Os:水稻
Fig. 3 Sequence alignment of CaFD1 and bZIP proteins from other plantsRed, purple and blue indicate 100%, >75%, and >50% similarity, respectively; Ca: Capsicum annuum L.; At: Arabidopsis thaliana; Os: Oryza sativa
| 顺式元件类型Cis-acting element | 生物学功能Biological function |
|---|---|
| TGACG | 茉莉酸甲酯Methyl jasmonate |
| I-box | 光响应Light response |
| TCT | 光响应Light response |
| CAT-box | 分生组织表达Meristem expression |
| MBS | 干旱诱导性Drought inducibility |
| TCA | 水杨酸Salicylic acid |
| P-box | 赤霉素Gibberellin |
| G-box | 光响应Light response |
| Box 4 | 光响应Light response |
| G-Box | 光响应Light response |
| TC | 防御和应激反应Defense and stress response |
| MRE | 光响应性Light responsiveness |
| TATC-box | 赤霉素Gibberellin |
| ABRE | 脱落酸Abscisic acid |
| CGTCA | 茉莉酸Jasmonic acid |
| CAAT-box | 启动子和增强子Promoter and enhancer |
| TATA-box | 核心启动子元件Core promoter element |
表2 CaFD1顺式作用元件统计
Table 2 Statistics of cis-acting elements of CaFD1
| 顺式元件类型Cis-acting element | 生物学功能Biological function |
|---|---|
| TGACG | 茉莉酸甲酯Methyl jasmonate |
| I-box | 光响应Light response |
| TCT | 光响应Light response |
| CAT-box | 分生组织表达Meristem expression |
| MBS | 干旱诱导性Drought inducibility |
| TCA | 水杨酸Salicylic acid |
| P-box | 赤霉素Gibberellin |
| G-box | 光响应Light response |
| Box 4 | 光响应Light response |
| G-Box | 光响应Light response |
| TC | 防御和应激反应Defense and stress response |
| MRE | 光响应性Light responsiveness |
| TATC-box | 赤霉素Gibberellin |
| ABRE | 脱落酸Abscisic acid |
| CGTCA | 茉莉酸Jasmonic acid |
| CAAT-box | 启动子和增强子Promoter and enhancer |
| TATA-box | 核心启动子元件Core promoter element |
图8 CaFD1是开花促进因子A:沉默CaFD1植株及过表达CaFD1植株开花表型;B:沉默CaFD1植株及过表达CaFD1植株的沉默效率、现蕾天数和开花天数统计
Fig. 8 CaFD1 is a flowering-promoting factorA: Flowering phenotype of CaFD1-silenced plants and CaFD1-overexpressed plants. B: Statistics on silencing efficiency, bud-emerging days and flowering days of CaFD1 plants and CaFD1-overexpressed plants
| 1 | 邹学校, 马艳青, 戴雄泽, 等. 辣椒在中国的传播与产业发展 [J]. 园艺学报, 2020, 47(9): 1715-1726. |
| Zou XX, Ma YQ, Dai XZ, et al. Spread and industry development of pepper in China [J]. Acta Hortic Sin, 2020, 47(9): 1715-1726. | |
| 2 | 邹学校, 杨莎, 戴雄泽, 等. 中国辣椒产业快速发展40年回顾与展望 [J]. 园艺学报: 2023, 50(1): 247-258. |
| Zou XX, Yang S, Dai XZ, et al. A 40-year review and outlook on the rapid development of the pepper industry in China [J]. Acta Horticulturae Sinica, 2023, 50(1): 247-258. | |
| 3 | 邹学校, 胡博文, 熊程, 等. 中国辣椒育种60年回顾与展望 [J]. 园艺学报, 2022, 49(10): 2099-2118. |
| Zou XX, Hu BW, Xiong C, et al. Review and prospects of pepper breeding for the past 60 years in China [J]. Acta Hortic Sin, 2022, 49(10): 2099-2118. | |
| 4 | Wang F, Han TW, Jeffrey Chen Z. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants [J]. Commun Biol, 2024, 7(1): 579. |
| 5 | Shen Y, Mao L, Zhou Y, et al. Transcriptome analysis reveals key genes involved in trichome formation in pepper (Capsicum annuum L.) [J]. Plants (Basel), 2024, 13(8):1090. |
| 6 | Torres LF, Reichel T, Déchamp E, et al. Expression of DREB-like genes in Coffea canephora and C. Arabica subjected to various types of abiotic stress [J]. Trop Plant Biol, 2019, 12(2): 98-116. |
| 7 | Bakhshandeh E, Gholamhosseini M, Yaghoubian Y, et al. Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress [J]. Plant Growth Regul, 2020, 90(1): 123-136. |
| 8 | Gorham SR, Weiner AI, Yamadi M, et al. HISTONE DEACETYLASE 19 and the flowering time gene FD maintain reproductive meristem identity in an age-dependent manner [J]. J Exp Bot, 2018, 69(20): 4757-4771. |
| 9 | Li DB, Zhang HY, Mou MH, et al. Arabidopsis class II TCP transcription factors integrate with the FT-FD module to control flowering [J]. Plant Physiol, 2019, 181(1): 97-111. |
| 10 | Ji HT, Zhu YY, Tian S, et al. Downregulation of leaf flavin content induces early flowering and photoperiod gene expression in Arabidopsis [J]. BMC Plant Biol, 2014, 14: 237. |
| 11 | Abe M, Kobayashi Y, Yamamoto S, et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J]. Science, 2005, 309(5737): 1052-1056. |
| 12 | Lifschitz E, Eviatar T, Rozman A, et al. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli [J]. Proc Natl Acad Sci USA, 2006, 103(16): 6398-6403. |
| 13 | Jiang K, Liberatore KL, Park SJ, et al. Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture [J]. PLoS Genet, 2013, 9(12): e1004043. |
| 14 | 牛西强, 罗潇云, 康凯程, 等. 辣椒PEBP基因家族的全基因组鉴定、比较进化与组织表达分析 [J]. 园艺学报, 2021, 48(5): 947-959. |
| Niu XQ, Luo XY, Kang KC, et al. Genome-wide identification, comparative evolution and expression analysis of PEBP gene family from Capsicum annuum [J]. Acta Hortic Sin, 2021, 48(5): 947-959. | |
| 15 | Yuan XJ, Fang R, Zhou KH, et al. The APETALA2 homolog CaFFN regulates flowering time in pepper [J]. Hortic Res, 2021, 8: 208. |
| 16 | 袁秀云, 张仙云, 马杰, 等. 植物开花的分子调控机理研究 [J]. 安徽农业科学, 2010, 38(2): 614-616. |
| Yuan XY, Zhang XY, Ma J, et al. Molecular mechanisms of flowering in plants [J]. J Anhui Agric Sci, 2010, 38(2): 614-616. | |
| 17 | Pan TT, He ML, Liu HL, et al. Transcription factor bZIP65 delays flowering via suppressing Ehd1 expression in rice [J]. Mol Breed, 2022, 42(10): 63. |
| 18 | Kim H, Park SJ, Kim Y, et al. Subcellular localization of GIGANTEA regulates the timing of leaf senescence and flowering in Arabidopsis [J]. Front Plant Sci, 2020, 11: 589707. |
| 19 | Ye J, Tian RW, Meng XF, et al. Tomato SD1, encoding a kinase-interacting protein, is a major locus controlling stem development [J]. J Exp Bot, 2020, 71(12): 3575-3587. |
| 20 | 李淼. 番茄GRAS2基因调控果实发育的机理研究 [D]. 武汉: 华中农业大学, 2017. |
| Li M. Study on the mechanism of tomato GRAS2 gene regulating fruit development [D]. Wuhan: Huazhong Agricultural University, 2017. | |
| 21 | Lee J, Lee I. Regulation and function of SOC1, a flowering pathway integrator [J]. J Exp Bot, 2010, 61(9): 2247-2254. |
| 22 | 刘新宇, 刘杨, 葛海燕, 等. 茄子开花相关基因SmFT的克隆和表达分析 [J]. 分子植物育种, 2015, 13(6): 1297-1301. |
| Liu XY, Liu Y, Ge HY, et al. Cloning and expression analysis of SmFT controlling the flowering time in eggplant [J]. Mol Plant Breed, 2015, 13(6): 1297-1301. | |
| 23 | Dou H, Wang TT, Zhou X, et al. Genome-wide identification and expression of the AP2/ERF gene family in Morus notabilis [J]. Forests, 2024, 15(4): 697. |
| 24 | Chung MY, Vrebalov J, Alba R, et al. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening [J]. Plant J, 2010, 64(6): 936-947. |
| 25 | Sornaraj P, Luang S, Lopato S, et al. Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: a molecular model of a wheat bZIP factor and implications of its structure in function [J]. Biochim Biophys Acta, 2016, 1860(1 Pt A): 46-56. |
| 26 | 李白雪, 李金玲, 陈春林, 等. 辣椒CabZIP42的克隆及表达分析 [J]. 生物技术通报, 2024, 40(12): 93-101. |
| Li BX, Li JL, Chen CL, et al. Cloning and expression analysis of CabZIP42 in peppers [J]. Biotechnol Bull, 2024, 40(12): 93-101. | |
| 27 | Pan YL, Hu X, Li CY, et al. SlbZIP38, a tomato bZIP family gene downregulated by abscisic acid, is a negative regulator of drought and salt stress tolerance [J]. Genes, 2017, 8(12): 402. |
| 28 | Zhu MK, Meng XQ, Cai J, et al. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato [J]. BMC Plant Biol, 2018, 18(1): 83. |
| 29 | 任文静, 巫涛, 马洲洋, 等. 梭梭bZIP基因HabZIP60克隆及非生物胁迫下的表达分析 [J]. 分子植物育种, 2023:1-19. |
| Ren WJ, Wu T, Ma ZY, et al. Cloning of the Haloxylon ammodendron bZIP gene HabZIP60 and expression analysis under abiotic stress [J]. Molecular Plant Breeding, 2023: 1-19. | |
| 30 | 王清, 武立伟, 范潘慧, 等. 响应ABA的甘草bZIP转录因子的基因表达及调控研究 [J]. 中国现代中药, 2023, 25(6): 1207-1217. |
| Wang Q, Wu LW, Fan PH, et al. Gene expression and regulation of bZIP transcription factors in response to ABA in Glycyrrhiza uralensis fisch [J]. Mod Chin Med, 2023, 25(6): 1207-1217. |
| [1] | 王田田, 常雪瑞, 黄婉洋, 黄嘉欣, 苗如意, 梁燕平, 王静. 辣椒GASA基因家族的鉴定及分析[J]. 生物技术通报, 2025, 41(4): 166-175. |
| [2] | 马利花, 侯梦娟, 朱新霞. 陆地棉GhNFD4在棉花干旱响应中的功能[J]. 生物技术通报, 2025, 41(3): 104-111. |
| [3] | 张益瑄, 马宇, 王童童, 盛苏奥, 宋家凤, 吕钊彦, 朱晓彪, 侯华兰. 马铃薯DIR家族全基因组鉴定及表达模式分析[J]. 生物技术通报, 2025, 41(3): 123-136. |
| [4] | 韩江涛, 张帅博, 秦雅蕊, 韩硕洋, 张雅康, 王吉庆, 杜清洁, 肖怀娟, 李猛. 甜瓜β-淀粉酶基因家族的鉴定及对非生物胁迫的响应[J]. 生物技术通报, 2025, 41(3): 171-180. |
| [5] | 焦小雨, 吴琼, 刘丹丹, 孙明慧, 阮旭, 王雷刚, 王文杰. 茶树CsWAK8克隆及其在响应冷胁迫过程中的功能分析[J]. 生物技术通报, 2025, 41(2): 210-220. |
| [6] | 匡健华, 程志鹏, 赵永晶, 杨洁, 陈润乔, 陈龙清, 胡慧贞. 激素和非生物胁迫下荷花GH3基因家族的表达分析[J]. 生物技术通报, 2025, 41(2): 221-233. |
| [7] | 黄颖, 遇文婧, 刘雪峰, 刁桂萍. 山新杨谷胱甘肽转移酶基因的生物信息学与表达模式分析[J]. 生物技术通报, 2025, 41(2): 248-256. |
| [8] | 葛仕杰, 刘怡德, 张华东, 宁强, 朱展望, 王书平, 刘易科. 小麦蛋白质二硫键异构酶基因家族的鉴定与表达[J]. 生物技术通报, 2025, 41(2): 85-96. |
| [9] | 殷缘, 程爽, 刘定豪, 邓晓霞, 李凯月, 王竞红, 蔺吉祥. 外源过氧化氢(H2O2)影响非生物胁迫下植物生长与生理代谢机制的研究进展[J]. 生物技术通报, 2025, 41(1): 1-13. |
| [10] | 武志健, 刘广洋, 林志豪, 盛彬, 陈鸽, 许晓敏, 王军伟, 徐东辉. 蔬菜种子萌发的纳米调控及其机制研究进展[J]. 生物技术通报, 2025, 41(1): 14-24. |
| [11] | 李禹欣, 李苗, 杜晓芬, 韩康妮, 连世超, 王军. 谷子SiSAP基因家族的鉴定与表达分析[J]. 生物技术通报, 2025, 41(1): 143-156. |
| [12] | 刘倩, 马连杰, 张慧, 王冬, 范茂, 廖敦秀, 赵正武, 卢文才. 辣椒炭疽病生防菌株TN2的筛选鉴定与抑菌效果[J]. 生物技术通报, 2025, 41(1): 287-297. |
| [13] | 申鹏, 高雅彬, 丁红. 马铃薯SAT基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(9): 64-73. |
| [14] | 吴慧琴, 王延宏, 刘涵, 司政, 刘雪晴, 王静, 阳宜, 成妍. 辣椒UGT基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 198-211. |
| [15] | 张曼玉, 董嘉诚, 苟福凡, 弓朝晖, 刘倩, 孙文良, 孔臻, 郝捷, 王敏, 田朝光. 嗜热毁丝霉果胶酯酶MtCE12-1的克隆表达及其酶学性质和应用研究[J]. 生物技术通报, 2024, 40(9): 291-300. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||