生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 210-220.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0542
• 研究报告 • 上一篇
焦小雨(), 吴琼, 刘丹丹, 孙明慧, 阮旭, 王雷刚, 王文杰(
)
收稿日期:
2024-06-07
出版日期:
2025-02-26
发布日期:
2025-02-28
通讯作者:
王文杰,男,研究员,研究方向:茶树品种选育、茶叶加工与品质;E-mail: 391590137@qq.com作者简介:
焦小雨,女,助理研究员,研究方向:茶树种质资源与遗传育种;E-mail: 670618026@qq.com
基金资助:
JIAO Xiao-yu(), WU Qiong, LIU Dan-dan, SUN Ming-hui, RUAN Xu, WANG Lei-gang, WANG Wen-jie(
)
Received:
2024-06-07
Published:
2025-02-26
Online:
2025-02-28
摘要:
目的 细胞壁关联蛋白激酶(wall associated kinase,WAK)是一类特殊的类受体激酶(receptor like kinase, RLK),其在调节植物生长和应对生物或非生物胁迫等方面发挥着重要作用。探究CsWAK8在响应冷胁迫过程中的功能,为今后解析茶树抗寒机理提供理论依据。 方法 从茶树叶片中克隆了CsWAK8。采用实时荧光定量PCR(qPCR)分析CsWAK8在不同组织以及越冬期不同抗寒性茶树品系中的表达模式。通过农杆菌介导法在拟南芥中异源表达CsWAK8,并对转基因植株进行冷处理表型观察、酶活测定和冷响应相关基因表达检测。 结果 CsWAK8的CDS全长2 307 bp,编码768个氨基酸,具有WAK家族特征保守结构域。CsWAK8在茶树成熟叶片中高表达,在越冬期,冷敏感型茶树品系叶片和根中CsWAK8表达量多显著高于冷耐受型茶树品系。通过异源过表达获得了9株转CsWAK8拟南芥纯合株系,对其中3个株系进行了耐冷性分析,发现在冷胁迫下,转基因株系的根长和存活率显著低于野生型,盆栽苗莲座叶的枯死程度较野生型更高,且转基因株系L48在冷冻处理6 h时的MDA含量显著高于野生型。此外,qPCR分析结果显示,在冷胁迫下,转CsWAK8拟南芥中AtCBFs的相对表达量大多显著低于野生型。 结论 转CsWAK8拟南芥相较于野生型拟南芥对冷处理更敏感。CsWAK8可能通过CBF介导的冷信号途径在响应和耐受冷胁迫过程中起负调节作用。
焦小雨, 吴琼, 刘丹丹, 孙明慧, 阮旭, 王雷刚, 王文杰. 茶树CsWAK8克隆及其在响应冷胁迫过程中的功能分析[J]. 生物技术通报, 2025, 41(2): 210-220.
JIAO Xiao-yu, WU Qiong, LIU Dan-dan, SUN Ming-hui, RUAN Xu, WANG Lei-gang, WANG Wen-jie. Cloning and Functional Analysis of CsWAK8 Gene from Camellia sinensis during Cold Stress[J]. Biotechnology Bulletin, 2025, 41(2): 210-220.
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 引物用途 Primer usage |
---|---|---|
CsWAK8-F | ATGGCTTTCTCGCATGGAATGCAAT | CsWAK8 CDS 扩增 CsWAK8 CDS amplification |
CsWAK8-R | TCACCTCCCACCATCCATTGGCAAA | |
CsWAK8-qF | AATGGAATTGGAGGGGTTGAT | CsWAK8 qPCR分析 CsWAK8 qPCR analysis |
CsWAK8-qR | ACATGTTCCCTCACACTATCATATC | |
β-actin-qF | GCCATCTTTGATTGGAATGG | 茶树内参基因qPCR分析 qPCR analysis of reference genes in C. sinensis |
β-actin-qR | GGTGCCACAACCTTGATCTT | |
CsWAK8-3301-F | TATGACCATGATTACGAATTCATGGCTTTCTCGCATGGAATGCAAT | pCAMBIA3301-CsWAK8载体构建 pCAMBIA3301-CsWAK8 vector construction |
CsWAK8-3301-R | CAGGTCGACTCTAGAGGATCCTCACCTCCCACCATCCATTGGCAAA | |
3301-35S pro-R | TGTTCTCTCCAAATG AAATGAACTTCCTT | 转基因拟南芥分子鉴定 Molecular identification of transgenic A. thaliana |
AtCBF1-qF | GCCACGAGTTGTCCGAAGAA | AtCBF1 qPCR分析 AtCBF1 qPCR analysis |
AtCBF1-qR | AAGCCGAGTCAGCGAAGTTG | |
AtCBF2-qF | ATTTCGCTGACTCGGCTTGG | AtCBF2 qPCR分析 AtCBF2 qPCR analysis |
AtCBF2-qR | ACGCATCTTGGCTCTGTTCC | |
AtCBF3-qF | GCCGATCAGCCTGTCTCAAT | AtCBF3 qPCR分析 AtCBF3 qPCR analysis |
AtCBF3-qR | GCTCTGTTCCGCCGTGTAA | |
AtUBQ10-qF | AGTCCACCCTTCATCTTGTTCTC | 拟南芥内参基因qPCR分析 qPCR analysis of reference genes in A. thaliana |
AtUBQ10-qR | GTCAGCCAAAGTTCTTCCATCT |
表1 本实验用到的引物
Table 1 The primers used in this study
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 引物用途 Primer usage |
---|---|---|
CsWAK8-F | ATGGCTTTCTCGCATGGAATGCAAT | CsWAK8 CDS 扩增 CsWAK8 CDS amplification |
CsWAK8-R | TCACCTCCCACCATCCATTGGCAAA | |
CsWAK8-qF | AATGGAATTGGAGGGGTTGAT | CsWAK8 qPCR分析 CsWAK8 qPCR analysis |
CsWAK8-qR | ACATGTTCCCTCACACTATCATATC | |
β-actin-qF | GCCATCTTTGATTGGAATGG | 茶树内参基因qPCR分析 qPCR analysis of reference genes in C. sinensis |
β-actin-qR | GGTGCCACAACCTTGATCTT | |
CsWAK8-3301-F | TATGACCATGATTACGAATTCATGGCTTTCTCGCATGGAATGCAAT | pCAMBIA3301-CsWAK8载体构建 pCAMBIA3301-CsWAK8 vector construction |
CsWAK8-3301-R | CAGGTCGACTCTAGAGGATCCTCACCTCCCACCATCCATTGGCAAA | |
3301-35S pro-R | TGTTCTCTCCAAATG AAATGAACTTCCTT | 转基因拟南芥分子鉴定 Molecular identification of transgenic A. thaliana |
AtCBF1-qF | GCCACGAGTTGTCCGAAGAA | AtCBF1 qPCR分析 AtCBF1 qPCR analysis |
AtCBF1-qR | AAGCCGAGTCAGCGAAGTTG | |
AtCBF2-qF | ATTTCGCTGACTCGGCTTGG | AtCBF2 qPCR分析 AtCBF2 qPCR analysis |
AtCBF2-qR | ACGCATCTTGGCTCTGTTCC | |
AtCBF3-qF | GCCGATCAGCCTGTCTCAAT | AtCBF3 qPCR分析 AtCBF3 qPCR analysis |
AtCBF3-qR | GCTCTGTTCCGCCGTGTAA | |
AtUBQ10-qF | AGTCCACCCTTCATCTTGTTCTC | 拟南芥内参基因qPCR分析 qPCR analysis of reference genes in A. thaliana |
AtUBQ10-qR | GTCAGCCAAAGTTCTTCCATCT |
图1 茶树CsWAK8的PCR扩增产物M: DL 5 000 DNA marker; 1-2: PCR产物
Fig. 1 PCR amplification product of CsWAK8 gene in C. sinensisM: DL 5 000 DNA marker; 1-2: PCR product
图2 茶树CsWAK8的蛋白结构分析A:CsWAK8蛋白结构域架构分析;B:CsWAK8蛋白的跨膜结构预测;C:CsWAK8蛋白的二级结构预测
Fig. 2 Protein structure analysis of CsWAK8 in C. sinensisA: Domain architecture analysis of CsWAK8 proteins. B: Prediction of transmembrane structure in CsWAK8 proteins. C: Prediction of secondary structures in CsWAK8 proteins
图3 茶树不同组织及不同抗寒性茶树品种(系)中CsWAK8的表达分析A:不同茶树品系受冷害表型,SXPX1、SXPX2、SXPX4、SXPX5、SXPX10和SXPX11分别为歙县试验园区中不同茶树品系;B:CsWAK8在茶树不同组织中的表达;C:CsWAK8在受冷害症状轻重不同的茶树品种(系)叶中的表达情况;D:CsWAK8在受冷害症状轻重不同的茶树品种(系)根中的表达情况。不同小写字母表示差异显著(P<0.05);下同
Fig. 3 Expressions of CsWAK8 in different tissues of C. sinensis and different cold-resistant varieties (lines) of C. sinensisA: Phenotypes of different tea tree varieties under cold damage, SXPX1, SXPX2, SXPX4, SXPX5, SXPX10 and SXPX11 are different C. sinensis varieties in the Shexian experimental zone. B: Expressions of CsWAK8 in different tissues of C. sinensis. C: Expressions of CsWAK8 in the leaves of tea tree varieties (lines) with varied cold damage symptoms. D: Expressions of CsWAK8 in the roots of tea tree varieties with varied cold damage symptoms. Different lowercase letters indicate significant difference (P<0.05). The same below
图4 野生型和转基因拟南芥GUS染色和分子鉴定A:转基因拟南芥PCR检测电泳图,M:DL 5000 DNA marker,+:pCAMBIA3301-CsWAK8质粒,WT:野生型拟南芥,L0-L48:转pCAMBIA3301-CsWAK8拟南芥;B:转基因拟南芥幼苗GUS染色;C:转基因拟南芥qPCR检测,N.D.:未检出
Fig. 4 GUS staining and molecular identification of wild-type and transgenic A. thalianaA: PCR detection of transgenic A. thaliana; M: DL 5000 DNA marker; +: pCAMBIA3301-CsWAK8 plasmid; WT: wild-type A. thaliana. L0-L48: pCAMBIA3301-CsWAK8 transgenic A.thaliana. B: The GUS staining of transgenic A.thaliana seedling; C: qPCR detection of transgenic A.thaliana. N.D.: Not detected
图5 低温胁迫下野生型和转基因拟南芥表型分析A、B:野生型和转基因拟南芥幼苗在(4±1)℃处理下的表型和根长;C、D:野生型和转基因拟南芥幼苗(-8±1)℃处理恢复后的表型和存活率;E:盆栽30 d的野生型和转基因拟南芥在低温处理恢复后的表型
Fig. 5 Phenotypic analysis of wild-type and transgenic A. thaliana under low-temperature stressA, B: Phenotypes and root lengths of wild-type and transgenic A. thaliana seedlings under (4±1)℃ treatment. C, D: Phenotypes and survival rate of wild-type and transgenic A. thaliana seedlings after recovery from (-8±1)℃ treatment. E: Phenotypes of 30-day-old pot-grown wild-type and transgenic A. thaliana after recovery from low-temperature treatment
图6 冷冻胁迫下野生型和转基因拟南芥生理指标和AtCBFs基因表达分析
Fig. 6 Analysis of physiological indicators and AtCBFs gene expression of wild-type and transgenic A. thaliana under freezing stress
1 | 杨书运. 茶树冻害防控方法的研究 [D]. 合肥: 安徽农业大学, 2012. |
Yang SY. Study on prevention and control methods of freezing injury of tea trees [D]. Hefei: Anhui Agricultural University, 2012. | |
2 | Anderson CM, Wagner TA, Perret M, et al. WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix [J]. Plant Mol Biol, 2001, 47(1/2): 197-206. |
3 | He ZH, Cheeseman I, He D, et al. A cluster of five cell wall-associated receptor kinase genes, Wak1-5, are expressed in specific organs of Arabidopsis [J]. Plant Mol Biol, 1999, 39(6): 1189-1196. |
4 | Verica JA, He ZH. The cell wall-associated kinase (WAK) and WAK-like kinase gene family [J]. Plant Physiol, 2002, 129(2): 455-459. |
5 | de Oliveira LFV, Christoff AP, de Lima JC, et al. The Wall-associated Kinase gene family in rice genomes [J]. Plant Sci, 2014, 229: 181-192. |
6 | Zhang ZQ, Ma WY, Ren ZY, et al. Characterization and expression analysis of wall-associated kinase (WAK) and WAK-like family in cotton [J]. Int J Biol Macromol, 2021, 187: 867-879. |
7 | 焦小雨, 吴琼, 刘丹丹, 等. 茶树细胞壁关联蛋白激酶基因家族的鉴定与表达分析 [J]. 农业生物技术学报, 2023, 31(9): 1816-1831. |
Jiao XY, Wu Q, Liu DD, et al. Identification and expression analysis of the wall-associated kinase gene family in Camellia sinensis [J]. J Agric Biotechnol, 2023, 31(9): 1816-1831. | |
8 | Lally D, Ingmire P, Tong HY, et al. Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation and alters morphology [J]. Plant Cell, 2001, 13(6): 1317-1331. |
9 | Kanneganti V, Gupta AK. RNAi mediated silencing of a wall associated kinase, OsiWAK1 in Oryza sativa results in impaired root development and sterility due to anther indehiscence: wall associated kinases from Oryza sativa [J]. Physiol Mol Biol Plants, 2011, 17(1): 65-77. |
10 | Brutus A, Sicilia F, Macone A, et al. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides [J]. Proc Natl Acad Sci USA, 2010, 107(20): 9452-9457. |
11 | Diener AC, Ausubel FM. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific [J]. Genetics, 2005, 171(1): 305-321. |
12 | Yang J, Xie MX, Wang XF, et al. Identification of cell wall-associated kinases as important regulators involved in Gossypium hirsutum resistance to Verticillium dahliae [J]. BMC Plant Biol, 2021, 21(1): 220. |
13 | Li H, Zhou SY, Zhao WS, et al. A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance [J]. Plant Mol Biol, 2009, 69(3): 337-346. |
14 | Harkenrider M, Sharma R, De Vleesschauwer D, et al. Overexpression of rice wall-associated kinase 25 (OsWAK25) alters resistance to bacterial and fungal pathogens [J]. PLoS One, 2016, 11(1): e0147310. |
15 | Saintenac C, Lee WS, Cambon F, et al. Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici [J]. Nat Genet, 2018, 50(3): 368-374. |
16 | Dmochowska-Boguta M, Kloc Y, Zielezinski A, et al. TaWAK6 encoding wall-associated kinase is involved in wheat resistance to leaf rust similar to adult plant resistance [J]. PLoS One, 2020, 15(1): e0227713. |
17 | Qi HJ, Zhu XL, Guo FL, et al. The wall-associated receptor-like kinase TaWAK7D is required for defense responses to Rhizoctonia cerealis in wheat [J]. Int J Mol Sci, 2021, 22(11): 5629. |
18 | Sivaguru M, Ezaki B, He ZH, et al. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis [J]. Plant Physiol, 2003, 132(4): 2256-2266. |
19 | Hou XW, Yin XY. Role of OsWAK124, a rice wall-associated kinase, in response to environmental heavy metal stresses [J]. Pak J Bot, 2017, 49(4): 1255-1261. |
20 | Wang H, Niu HH, Liang MM, et al. A wall-associated kinase gene CaWAKL20 from pepper negatively modulates plant thermotolerance by reducing the expression of ABA-responsive genes [J]. Front Plant Sci, 2019, 10: 591. |
21 | Lin W, Wang YH, Liu XY, et al. OsWAK112, A wall-associated kinase, negatively regulates salt stress responses by inhibiting ethylene production [J]. Front Plant Sci, 2021, 12: 751965. |
22 | Yang TB, Chaudhuri S, Yang LH, et al. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants [J]. J Biol Chem, 2010, 285(10): 7119-7126. |
23 | Yang TB, Shad Ali G, Yang LH, et al. Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants [J]. Plant Signal Behav, 2010, 5(8): 991-994. |
24 | Xia EH, Zhang HB, Sheng J, et al. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis [J]. Mol Plant, 2017, 10(6): 866-877. |
25 | Fang LC, Wang ZM, Su LY, et al. Vitis Myb14 confer cold and drought tolerance by activating lipid transfer protein genes expression and reactive oxygen species scavenge [J]. Gene, 2024, 890: 147792. |
26 | 陈思琪, 孙敬爽, 麻文俊, 等. 植物低温胁迫调控机制研究进展 [J]. 中国农学通报, 2022, 38(17): 51-61. |
Chen SQ, Sun JS, Ma WJ, et al. Regulation mechanism of low temperature stress on plants: research progress [J]. Chin Agric Sci Bull, 2022, 38(17): 51-61. | |
27 | 张杰, 孙叶烁, 薛一花, 等. 贮藏温度对白菜叶片SOD、POD活性及MDA含量的影响 [J]. 西北农林科技大学学报: 自然科学版, 2019, 47(10): 113-119. |
Zhang J, Sun YS, Xue YH, et al. Effects of storage temperature on SOD and POD activities and MDA contents in Chinese cabbage leaves [J]. J Northwest A F Univ Nat Sci Ed, 2019, 47(10): 113-119. | |
28 | 侯梦娟, 朱新霞, 孔辉, 等. GhCDPK4基因的克隆和功能分析 [J]. 西北农业学报, 2022, 31(2): 217-223. |
Hou MJ, Zhu XX, Kong H, et al. Cloning and functional analysis of GhCDPK4 gene [J]. Acta Agric Boreali Occidentalis Sin, 2022, 31(2): 217-223. | |
29 | 王建格, 周婵, 刘译朗, 等. 香樟CcCBFc基因抗寒功能验证及分析 [J]. 农业生物技术学报, 2021, 29(2): 268-278. |
Wang JG, Zhou C, Liu YL, et al. Verification and analysis of cold resistance of CcCBFc gene from Cinnamomum camphora [J]. J Agric Biotechnol, 2021, 29(2): 268-278. | |
30 | 王楠楠. 梅花花朵抗寒性评价及响应低温胁迫关键WRKY基因筛选 [D]. 杭州: 浙江农林大学, 2021. |
Wang NN. Evaluation of cold resistance of plum blossoms and screening of key WRKY genes in response to low temperature stress [D]. Hangzhou: Zhejiang A & F University, 2021. | |
31 | 罗军武, 唐和平, 黄意欢, 等. 茶树不同抗寒性品种间保护酶类活性的差异 [J]. 湖南农业大学学报: 自然科学版, 2001, 27(2): 94-96. |
Luo JW, Tang HP, Huang YH, et al. Differences of activities of protective enzymes of tea plant varieties with different cold resistant abilities [J]. J Hunan Agric Univ, 2001, 27(2): 94-96. | |
32 | Liu JY, Shi YT, Yang SH. Insights into the regulation of C-repeat binding factors in plant cold signaling [J]. J Integr Plant Biol, 2018, 60(9): 780-795. |
33 | Gilmour SJ, Fowler SG, Thomashow MF. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities [J]. Plant Mol Biol, 2004, 54(5): 767-781. |
34 | Liu YK, Dang PY, Liu LX, et al. Cold acclimation by the CBF-COR pathway in a changing climate: lessons from Arabidopsis thaliana [J]. Plant Cell Rep, 2019, 38(5): 511-519. |
35 | Dong MA, Farré EM, Thomashow MF. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis [J]. Proc Natl Acad Sci USA, 2011, 108(17): 7241-7246. |
[1] | 许圆梦, 毛娇, 王梦瑶, 王数, 任江陵, 刘宇涵, 刘思辰, 乔治军, 王瑞云, 曹晓宁. 糜子PmDEP1和PmEP3基因的克隆与表达特征分析[J]. 生物技术通报, 2025, 41(2): 150-162. |
[2] | 乔岩, 杨芳, 任盼荣, 祁伟亮, 安沛沛, 李茜, 李丹, 肖俊飞. 马铃薯野生种烯酰水合酶超家族基因ScDHNS的克隆与功能分析[J]. 生物技术通报, 2024, 40(9): 92-103. |
[3] | 刘丹丹, 王雷刚, 孙明慧, 焦小雨, 吴琼, 王文杰. 茶树海藻糖-6-磷酸合成酶(TPS)基因家族鉴定与表达分析[J]. 生物技术通报, 2024, 40(8): 152-163. |
[4] | 庞梦真, 徐汉琴, 刘海燕, 宋娟, 王佳涵, 孙丽娜, 姬佩梅, 尹泽芝, 胡又川, 赵晓萌, 梁闪闪, 张泗举, 栾维江. 水稻黄化早抽穗突变体 hz1 的基因鉴定及功能分析[J]. 生物技术通报, 2024, 40(7): 125-136. |
[5] | 任晓敏, 云岚, 艾芊, 赵乔. 新麦草异戊烯基转移酶PjIPT基因的功能验证[J]. 生物技术通报, 2024, 40(7): 207-215. |
[6] | 沈真辉, 曹瑶, 杨林雷, 罗祥英, 子灵山, 陆青青, 李荣春. 金耳和毛韧革菌麦角硫因生物合成基因的克隆及生物信息学分析[J]. 生物技术通报, 2024, 40(7): 259-272. |
[7] | 黄丹, 姜山, 彭涛. 褐角苔FfCYP98基因克隆及其功能分析[J]. 生物技术通报, 2024, 40(7): 273-284. |
[8] | 王玉书, 赵琳琳, 赵爽, 胡琦, 白慧霞, 王欢, 曹业萍, 范震宇. 大白菜BrCYP83B1基因的克隆及表达分析[J]. 生物技术通报, 2024, 40(6): 152-160. |
[9] | 郝思怡, 张君珂, 王斌, 曲朋燕, 李瑞得, 程春振. 香蕉ELF3的克隆与表达分析[J]. 生物技术通报, 2024, 40(5): 131-140. |
[10] | 杜泽光, 任少文, 张凤勤, 李梅兰, 李改珍, 齐仙惠. 大白菜BrMLP328的克隆、表达及功能验证[J]. 生物技术通报, 2024, 40(4): 122-129. |
[11] | 刘换换, 杨立春, 李火根. 北美鹅掌楸LtMYB305基因的克隆及功能分析[J]. 生物技术通报, 2024, 40(4): 179-188. |
[12] | 钟匀, 林春, 刘正杰, 董陈文华, 毛自朝, 李兴玉. 芦笋皂苷合成相关糖基转移酶基因克隆及原核表达分析[J]. 生物技术通报, 2024, 40(4): 255-263. |
[13] | 杨伟成, 孙岩, 杨倩, 王壮琳, 马菊花, 薛金爱, 李润植. 陆地棉FAX家族的全基因组鉴定及GhFAX1的功能分析[J]. 生物技术通报, 2024, 40(3): 155-169. |
[14] | 杨艳, 胡洋, 刘霓如, 殷璐, 杨锐, 王鹏飞, 穆霄鹏, 张帅, 程春振, 张建成. ‘红满堂’苹果MbbZIP43基因的克隆与功能研究[J]. 生物技术通报, 2024, 40(2): 146-159. |
[15] | 杨雨青, 谭娟, 汪芳, 彭顺利, 陈婕, 谭明燕, 吕美艳, 周富裕, 刘声传. 茶树叶绿体基因组的研究与应用进展[J]. 生物技术通报, 2024, 40(2): 20-30. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 46
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1369
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||