生物技术通报 ›› 2013, Vol. 0 ›› Issue (2): 8-14.
李素贞 陈景堂
收稿日期:
2012-12-24
修回日期:
2013-02-27
出版日期:
2013-02-26
发布日期:
2013-02-27
作者简介:
李素贞,女,硕士研究生,研究方向:植物资源学;E-mail :lisz-1208@163.com
基金资助:
Li Suzhen Chen Jingtang
Received:
2012-12-24
Revised:
2013-02-27
Published:
2013-02-26
Online:
2013-02-27
摘要: 锌和铁在植物的生长发育过程中参与体内的许多生化反应。锌、铁缺乏或过剩都会对植物产生一定的影响。因此,植物需要一系列金属转运体的协同工作以保持体内离子平衡。这些转运体可分为吸收蛋白和排出蛋白两大类,它们参与细胞内锌铁离子的跨膜运输,以及调节细胞内锌铁离子的平衡与分配。目前,植物细胞中锌铁转运蛋白的转录表达水平与锌铁离子在植物体中的积累与分布之间的联系已被揭示,并分离克隆了许多相关基因家族成员。综述近年来发现并鉴定出的参与锌铁转运的蛋白家族的表达、定位等相关的研究进展。
李素贞, 陈景堂. 植物锌铁转运相关蛋白家族的研究进展[J]. 生物技术通报, 2013, 0(2): 8-14.
Li Suzhen, Chen Jingtang . Progresses in Studying of Protein Families Involved in Zn/Fe Transporting in Plants[J]. Biotechnology Bulletin, 2013, 0(2): 8-14.
[1] Wintz H, Fox T, Wu YY, et al. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis[J]. The Journal of Biological Chemistry, 2003, 278(48):47644-47653. [2] Haydon MJ, Cobbett CS. A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis[J]. Plant Physiology, 2007, 143(4):1705-1719. [3] Mathews WR, Wang F, Eide DJ, Van Doren M. Drosophila fear of intimacy encodes a Zrt/IRT-like protein(ZIP)family zinc transporter functionally related to mammalian ZIP proteins[J]. The Journal of Biological Chemistry, 2005, 280(1):787-795. [4] Briat JF, Lebrun M. Plant responses to metal toxicity[J]. Comptes 生物技术通报 Biotechnology Bulletin 2013年第2期12 Rendus de l’Academie des Sciences Serie III, Sciences de la Vie, 1999, 322(1):43-54. [5] Colangelo EP, Guerinot ML. Put the metal to the petal:metal uptake and transport throughout plants[J]. Current Opinion in Plant Biology, 2006, 9(3):322-330. [6] Yang X, Feng Y, He Z, Stoffella PJ. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation[J]. J Trace Elem Med Biol, 2005, 18(4):339-353. [7] Guerinot ML. The ZIP family of metal transporters[J]. Biochim Biophys Acta, 2000, 1465(1-2):190-198. [8] Eide D, Broderius M, Fett J, Guerinot ML. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(11):5624-5628. [9] Henriques R, Jasik J, Klein M, et al. Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology, 2002, 50(4-5): 587-597. [10] Varotto C, Maiwald D, Pesaresi P, et al. The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana[J]. The Plant journal:for Cell and Molecular Biology, 2002, 31(5):589-599. [11] Vert G, Grotz N, Dedaldechamp F, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth[J]. Plant Cell, 2002, 14(6):1223-1233. [12] Nishida S, Tsuzuki C, Kato A, et al. AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana[J]. Plant & cell Physiology, 2011, 52(8): 1433-1442. [13] Vert G, Briat JF, Curie C. ArabidopsisIRT2 gene encodes a rootperiphery iron transporter[J]. The Plant Journal:for Cell and Molecular Biology, 2001, 26(2):181-189. [14] Vert G, Barberon M, Zelazny E, et al. Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells[J]. Planta, 2009, 229(6):1171- 1179. [15] Lin YF, Liang HM, Yang SY, et al. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter[J]. The New Phytologist, 2009, 182(2):392-404. [16] Kramer U, Talke IN, Hanikenne M. Transition metal transport[J]. FEBS Lett, 2007, 581(12):2263-2272. [17] Ramesh SA, Shin R, Eide DJ, Schachtman DP. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol, 2003, 133(1):126-134. [18] Ishimaru Y, Suzuki M, Kobayashi T, et al. OsZIP4, a novel zincregulated zinc transporter in rice[J]. Journal of Experimental Botany, 2005, 56(422):3207-3214. [19] Yang X, Huang J, Jiang Y, Zhang HS. Cloning and functional identification of two members of the ZIP(Zrt, Irt-like protein) gene family in rice(Oryza sativa L.)[J]. Molecular Biology Reports, 2009, 36(2):281-287. [20] Lee S, Kim SA, Lee J, et al. Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice[J]. Molecules and Cells, 2010, 29(6):551-558. [21] Lee S, Jeong HJ, Kim SA, et al. OsZIP5 is a plasma membrane zinc transporter in rice[J]. Plant Molecular Biology, 2010, 73(4-5): 507-517. [22] Lee S, An G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice[J]. Plant, Cell & Environment, 2009, 32(4):408-416. [23] Durmaz E, Coruh C, Dinler G, et al. Expression and cellular localization of ZIP1 transporter under zinc deficiency in wild emmer wheat[J]. Plant Molecular Biology Reporter, 2011, 29(3): 582-596. [24] Moreau S, Thomson RM, Kaiser BN, et al. GmZIP1 encodes a symbiosis-specific zinc transporter in soybean[J]. J Biol Chem, 2002, 277(7):4738-4746. [25] Lopez-Millan AF, Ellis DR, Grusak MA. Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula[J]. Plant Molecular Biology, 2004, 54(4):583-596. [26] Xu Y, Wang B, Yu J, et al. Cloning and characterisation of ZmZLP1, a gene encoding an endoplasmic reticulum-localised zinc transporter in Zea mays[J]. Functional Plant Biology, 2010, 37(3): 194-205. [27] Curie C, Panaviene Z, Loulergue C, et al. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake[J]. Nature, 2001, 409(6818):346-349. [28] Schaaf G, Ludewig U, Erenoglu BE, et al. ZmYS1 functions as a proton-coupled symporter for phytosiderophore-and nicotianamine2013 年第2期13 李素贞等:植物锌铁转运相关蛋白家族的研究进展 chelated metals[J]. The Journal of Biological Chemistry, 2004, 279(10):9091-9096. [29] Ueno D, Yamaji N, Ma JF. Further characterization of ferricphytosiderophore transporters ZmYS1 and HvYS1 in maize and barley[J]. Journal of Experimental Botany, 2009, 60(12): 3513-3520. [30] von Wiren N, Klair S, Bansal S, et al. Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants[J]. Plant Physiology, 1999, 119(3):1107-1114. [31] Koike S, Inoue H, Mizuno D, et al. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem[J]. Plant J, 2004, 39(3):415-424. [32] Kakei Y, Ishimaru Y, Kobayashi T, et al. OsYSL16 plays a role in the allocation of iron[J]. Plant Molecular Biology, 2012, 79(6): 583-594. [33] Le Jean M, Schikora A, Mari S, et al. A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading[J]. Plant J, 2005, 44(5):769-782. [34] DiDonato RJ Jr, Roberts LA, Sanderson T, et al. Arabidopsis Yellow Stripe-Like2(YSL2):a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes[J]. Plant J, 2004, 39(3):403-414. [35] Waters BM, Chu HH, Didonato RJ, et al. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds[J]. Plant Physiology, 2006, 141(4):1446-1458. [36] Zheng L, Fujii M, Yamaji N, et al. Isolation and characterization of a barley yellow stripe-like gene, HvYSL5[J]. Plant & Cell Physiology, 2011, 52(5):765-774. [37] Nevo Y, Nelson N. The NRAMP family of metal-ion transporters[J]. Biochimica et Biophysica Acta, 2006, 1763(7):609-620. [38] Cellier M, Prive G, Belouchi A, et al. Nramp defines a family of membrane proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(22):10089- 10093. [39] Curie C, Alonso JM, Le Jean M, et al. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport[J]. The Biochemical Journal, 2000, 347(Pt 3):749-755. [40] Bereczky Z, Wang HY, Schubert V, et al. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato[J]. The Journal of Biological Chemistry, 2003, 278(27):24697-24704. [41] Thomine S, Lelievre F, Debarbieux E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency[J]. The Plant Journal:for Cell and Molecular Biology, 2003, 34(5):685-695. [42] Lanquar V, Lelievre F, Bolte S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron[J]. The EMBO Journal, 2005, 24(23):4041-4051. [43] Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa NK. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice[J]. Plant Signaling & Behavior, 2011, 6(11):1813- 1816. [44] Sperotto RA, Boff T, Duarte GL, et al. Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains[J]. Journal of Plant Physiology 2010, 167(17):1500-1506. [45] Gaither LA, Eide DJ. Eukaryotic zinc transporters and their regulation[J]. Biometals, 2001, 14(3-4):251-270. [46] Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M. Overview of mammalian zinc transporters[J]. Cellular and Molecular Life Sciences:CMLS, 2004, 61(1):49-68. [47] Kobae Y, Uemura T, Sato MH, et al. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis[J]. Plant & Cell Physiology, 2004, 45(12):1749-1758. [48] van der Zaal BJ, Neuteboom LW, Pinas JE, et al. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation[J]. Plant Physiology, 1999, 119(3):1047-1055. [49] Arrivault S, Senger T, Kramer U. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply[J]. The Plant Journal:for Cell and Molecular Biology, 2006, 46(5): 861-879. [50] Podar D, Scherer J, Noordally Z, et al. Metal selectivity determinants in a family of transition metal transporters[J]. The Journal of Biological Chemistry, 2012, 287(5):3185-3196. [51] Yuan L, Yang S, Liu B, et al. Molecular characterization of a rice metal tolerance protein, OsMTP1[J]. Plant Cell Reports, 2012, 31(1):67-79. 生物技术通报 Biotechnology Bulletin 2013年第2期14 [52] Lan HX, Wang ZF, Wang QH, et al. Characterization of a vacuolar zinc transporter OZT1 in rice(Oryza sativa L.)[J]. Molecular Biology Reports, 2013, 40(2):1201-1210. [53] Baxter I, Tchieu J, Sussman MR, et al. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice[J]. Plant Physiology, 2003, 132(2):618-628. [54] Hall JL, Williams LE. Transition metal transporters in plants[J]. Journal of Experimental Botany, 2003, 54(393):2601-2613. [55] Williams LE, Pittman JK, Hall JL. Emerging mechanisms for heavy metal transport in plants[J]. Biochimica et Biophysica Acta, 2000, 1465(1-2):104-126. [56] Axelsen KB, Palmgren MG. Inventory of the superfamily of P-type ion pumps in Arabidopsis[J]. Plant Physiology, 2001, 126(2): 696-706. [57] Woeste KE, Kieber JJ. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype[J]. The Plant Cell, 2000, 12(3):443-455. [58] Papoyan A, Kochian LV. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase[J]. Plant Physiology, 2004, 136(3):3814-3823. [59] Eren E, Arguello JM. Arabidopsis HMA2, a divalent heavy metaltransporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis[J]. Plant Physiology, 2004, 136(3):3712-3723. [60] Verret F, Gravot A, Auroy P, et al. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance[J]. FEBS Letters, 2004, 576(3):306-312. [61] Verret F, Gravot A, Auroy P, et al. Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch[J]. FEBS Letters, 2005, 579(6): 1515-1522. [62] Hussain D, Haydon MJ, Wang Y, et al. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis[J]. The Plant Cell, 2004, 16(5):1327-1339. [63] Siemianowski O, Mills RF, Williams LE, Antosiewicz DM. Expression of the P((1)B)-type ATPase AtHMA4 in tobacco modifies Zn and Cd root to shoot partitioning and metal tolerance[J]. Plant Biotechnology Journal, 2011, 9(1):64-74. [64] Moons A. Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots[J]. FEBS Letters, 2003, 553(3):370-376. (责任编辑 狄艳红) |
[1] | 陈中元, 王玉红, 代为俊, 张艳敏, 叶倩, 刘旭平, 谭文松, 赵亮. 柠檬酸铁铵对悬浮HEK293细胞转染的影响机制探究[J]. 生物技术通报, 2023, 39(9): 311-318. |
[2] | 宋志忠, 徐维华, 肖慧琳, 唐美玲, 陈景辉, 管雪强, 刘万好. 酿酒葡萄铁调节转运蛋白基因VvIRT1的克隆、表达与功能[J]. 生物技术通报, 2023, 39(8): 234-240. |
[3] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[4] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[5] | 马芳芳, 刘冠闻, 庞冰, 蒋春美, 师俊玲. 强化细胞外排提高工程菌类黄酮产量的策略[J]. 生物技术通报, 2023, 39(5): 63-76. |
[6] | 崔吉洁, 蔡文波, 庄庆辉, 高爱平, 黄建峰, 陈亚辉, 宋志忠. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146. |
[7] | 李昕悦, 周明海, 樊亚超, 廖莎, 张风丽, 刘晨光, 孙悦, 张霖, 赵心清. 基于转运蛋白工程提升微生物菌株耐受性和生物制造效率的研究进展[J]. 生物技术通报, 2023, 39(11): 123-136. |
[8] | 段敏杰, 李怡斐, 杨小苗, 王春萍, 黄启中, 黄任中, 张世才. 辣椒锌指蛋白DnaJ-Like基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报, 2023, 39(1): 187-198. |
[9] | 赵静雅, 彭梦雅, 张时雨, 单艺轩, 邢小萍, 施艳, 李海洋, 杨雪, 李洪连, 陈琳琳. C2H2锌指转录因子FpCzf7参与假禾谷镰孢的生长和致病性[J]. 生物技术通报, 2022, 38(8): 216-224. |
[10] | 洪天澍, 海英, 恩和巴雅尔, 高峰. 甜瓜CmABCG8基因的表达特性分析[J]. 生物技术通报, 2022, 38(7): 178-185. |
[11] | 周国彦, 银珊珊, 高佳鑫, 武春成, 闫立英, 谢洋. 黄瓜AHP基因家族的鉴定及其非生物胁迫表达分析[J]. 生物技术通报, 2022, 38(6): 112-119. |
[12] | 陈福暖, 黄瑜, 蔡佳, 王忠良, 简纪常, 王蓓. ABC转运蛋白结构及其在细菌致病性中的研究进展[J]. 生物技术通报, 2022, 38(6): 43-52. |
[13] | 高雪彦, 陈林旭, 陈显轲, 庞昕, 潘登, 林建群. 嗜酸硫杆菌在工农业中的应用[J]. 生物技术通报, 2022, 38(5): 36-46. |
[14] | 呼艳姣, 陈美凤, 强瑀, 李海燕, 刘静, 秦樊鑫. 镉胁迫下锌硒交互作用对水稻镉毒害的缓解机制[J]. 生物技术通报, 2022, 38(4): 143-152. |
[15] | 薛欣月, 于雪然, 刘晓刚, 马嘉欣, 田蕾, 李培富. 水稻锌吸收、转运、累积机理研究进展[J]. 生物技术通报, 2022, 38(4): 29-43. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||