[1] Sullenger BA, Gilboa E.Emerging clinical applications of RNA[J]. Nature, 2002, 418(6894):252. [2] Cho EJ, Rajendran M, Ellington AD.Aptamers as Emerging Probes for Macromolecular Sensing[M]. US:Springer, 2005. [3] Ravelet C, Grosset C, Peyrin E.Liquid chromatography, electrochromatography and capillary electrophoresis applications of DNA and RNA aptamers[J]. Journal of Chromatography A, 2006, 1117(1):1-10. [4] Lu Y, Liu J.Smart Nanomaterials inspired by biology:dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli[J]. Accounts of Chemical Research, 2007, 40(5):315-323. [5] Storhoff JJ, Mirkin CA.ChemInform Abstract:Programmed materials synthesis with DNA[J]. Cheminform, 1999, 30(39):1849-1862. [6] Silverman SK.Catalytic DNA(deoxyribozymes)for synthetic applications-current abilities and future prospects[J]. Chemical communications(Cambridge, England), 2008, 39(30):3467. [7] Famulok M, Mayer G, Blind M.Nucleic acid aptamers-from selection in vitro to applications in vivo[J]. Accounts of Chemical Research, 2000, 33(9):591. [8] Song S, Wang L, Li J, et al.Aptamer-based biosensors[J]. Trac Trends in Anal Chem, 2008, 27(2):108-117. [9] Breaker RR, Joyce GF.A DNA enzyme that cleaves RNA[J]. Chemistry & Biology, 1994, 1(4):223. [10] Huang PJ, Liu J.Rational evolution of Cd2+-specific DNAzymes with phosphorothioate modified cleavage junction and Cd2+ sensing[J]. Nucleic Acids Research, 2015, 43(12):6125-6133. [11] Zhou W, Vazin M, Yu T, et al.In vitro selection of chromium-dependent DNA zymes for sensing chromium(III)and chromium(VI)[J]. Chemistry, 2016, 22(28):9835. [12] Huang PJ, Liu J.An Ultrasensitive light-up Cu2+ biosensor using a new DNAzyme cleaving a phosphorothioate modified substrate [J]. Anal Chem, 2016, 88(6):3341. [13] Lan T, Furuya K, Lu Y.A highly selective lead sensor based on a classic lead DNAzyme[J]. Chem Commun, 2010, 46(22):3896. [14] Santoro SW, Joyce GF.A general purpose RNA-cleaving DNA enzyme[J]. Proc Natl Acad Sci USA, 1997, 94(9):4262-4256. [15] Breaker RR, Joyce GF.A DNA enzyme with Mg 2+-dependent RNA phosphoesterase activity[J]. Chemistry & Biology, 1995, 2(10):655. [16] Santoro SW, Joyce GF.Mechanism and utility of an RNA-cleaving DNA enzyme[J]. Biochemistry, 1998, 37(38):13330-13342. [17] Cairns M J, Hopkins TM, Witherington C, et al.The influence of arm length asymmetry and base substitution on the activity of the 10-23 DNA enzyme[J]. Antisense and Nucleic Acid Drug Development, 2000, 10(5):323-332. [18] Pan WH, Devlin HF, Kelley C, et al.A selection system for identifying accessible sites in target RNAs[J]. RNA, 2001, 7(4):610-621. [19] Wang Q, Zhang D, Liu Y, et al.A structure-activity relationship study for 2’-deoxyadenosine analogs at A9 position in the catalytic core of 10-23 DNAzyme for rate enhancement[J]. Nucleic Acid Therapeutics, 2012, 22(6):423-427. [20] Vester B, Lundberg LB, S Rensen MD, et al. LNAzymes:incorporation of LNA-type monomers into DNAzymes markedly increases RNA cleavage[J]. J Am Chem Soc, 2002, 124(46):13682-13683. [21] Wengel J, Vester B, Lundberg LB, et al.LNA and alpha-L-LNA:towards therapeutic applications[J]. Nucleosides Nucleotides & Nucleic Acids, 2003, 22(5-8):601-614. [22] Asahina Y, Ito Y, Wu CH, et al.DNA ribonucleases that are active against intracellular hepatitis B viral RNA targets[J]. Hepatology, 1998, 28(2):547. [23] Sioud M, Leirdal M.Design of nuclease resistant protein kinase calpha DNA enzymes with potential therapeutic application[J]. Journal of Molecular Biology, 2000, 296(3):937-947. [24] Yen L, Strittmatter SM, Kalb RG.Sequence-specific cleavage of Huntingtin mRNA by catalytic DNA[J]. Annals of Neurology, 1999, 46(3):366-373. [25] Zhao Y, Li Z, Tang Z.Cleavage-based signal amplification of RNA[J]. Nature Communications, 2013, 4(2):1493. [26] Carter JR, Balaraman V, Kucharski CA, et al.A novel dengue virus detection method that couples DNAzyme and gold nanoparticle approaches[J]. Virology Journal, 2013, 10:201. [27] Li Y, Xu J, Wang L, et al.Aptamer-based fluorescent detection of bisphenol A using nonconjugated gold nanoparticles and CdTe quantum dots[J]. Sensors & Actuators B Chemical, 2016, 222:815-822. [28] Bone SM, Hasick NJ, Lima NE, et al.DNA-only cascade:a universal tool for signal amplification, enhancing the detection of target analytes[J]. Anal Chem, 2014, 86(18):9106-9113. [29] Cha TG, Pan J, Chen H, et al.A synthetic DNA motor that transports nanoparticles along carbon nanotubes[J]. Nat Nanotechnol, 2014, 9(1):39-43. [30] Fan H, Zhao Z, Yan G, et al.A smart DNAzyme-MnO2 nanosystem for efficient gene silencing[J]. Angewandte Chemie International Edition, 2015, 54(16):4801-4805. [31] Todd AV, Fuery CJ, Impey HL, et al.DzyNA-PCR:use of DNAzymes to detect and quantify nucleic acid sequences in a real-time fluorescent format[J]. Clinical Chemistry, 2000, 46(5):625-630. [32] Tian Y, Mao C.DNAzyme amplification of molecular beacon signal[J]. Talanta, 2005, 67(3):532-537. [33] Kahan-Hanum M, Douek Y, Adar R, et al.A Library of programma-ble DNAzymes that operate in a cellular environment[J]. Sci Rep, 2013, 3:1535. [34] Wu L, Tong Q, Li HC, et al.Design of a new hairpin DNAzyme:The activity controlled by TMPyP 4[J]. African Journal of Biotechnology, 2011, 10(40):7902-7910. [35] Yehl K, Joshi JP, Greene Bl, et al.Catalytic deoxyribozyme-modif-ied nanoparticles for RNAi-independent gene regulation[J]. ACS Nano, 2012, 6(10):9150-9157. [36] Elbaz J, Moshe M, Shlyahovsky B, et al.Cooperative multicomponent self-assembly of nucleic acid structures for the activation of DNAzyme cascades:a paradigm for DNA sensors and aptasensors[J]. Chemistry, 2009, 15(14):3411-3418. [37] Gong H, Zhong T, Gao L, et al.Unlabeled hairpin DNA probe for electrochemical detection of single-nucleotide mismatches based on MutS-DNA interactions[J]. Anal Chem, 2009, 81(20):8639-8643. [38] Sun C, Zhang L, Jiang J, et al.Electrochemical DNA biosensor based on proximity-dependent DNA ligation assays with DNAzyme amplification of hairpin substrate signal[J]. Biosens Bioelectron, 2010, 25(11):2483-2489. [39] Gao X, Huang H, Niu S, et al.Determination of magnesium ion in serum samples by a DNAzyme-based electrochemical biosensor[J]. Analytical Methods, 2012, 4(4):947-952. [40] Fokina AA, Stetsenko DA, Franois JC.DNA enzymes as potential therapeutics:towards clinical application of 10-23 DNAzymes[J]. Expert Opinion on Biological Therapy, 2015, 15(5):689-711. [41] Li N, Li Y, Gao X, et al.Multiplexed gene silencing in Living cells and in vivo using a DNAzymes-CoOOH nanocomposite[J]. Chem Commun, 2017, 53(36):4962-4965. [42] Dass CR, Friedhuber AM, Khachigian LM, et al.Biocompatible chitosan-DNAzyme nanoparticle exhibits enhanced biological activity[J]. Journal of Microencapsulation, 2008, 25(6):421-425. |