Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (6): 13-34.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0259
Previous Articles Next Articles
CHANG Han-wen, ZHENG Xin-ling, LUO Jian-mei, WANG Min, SHEN Yan-bing
Received:
2020-03-11
Online:
2020-06-26
Published:
2020-06-28
CHANG Han-wen, ZHENG Xin-ling, LUO Jian-mei, WANG Min, SHEN Yan-bing. Tolerance Elements and Their Application Progress on the Construction of Highly-efficient Microbial Cell Factory[J]. Biotechnology Bulletin, 2020, 36(6): 13-34.
[1] Yuan Y, Bi C, Nicolaou SA, et al.Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production[J]. Appl Microb Biotechnol, 2014, 98(19):8399-8411. [2] Tan Z, Khakbaz P, Chen Y, et al.Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables[J]. Metab Eng, 2017, 44:1-12. [3] Tan Z, Yoon JM, Nielsen DR, et al.Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables[J]. Metab Eng, 2016, 35:105-113. [4] Bui LM, Lee JY, Geraldi A, et al.Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions[J]. J Biotechnol, 2015, 204:33-44. [5] Lennen RM, Pfleger BF.Modulating membrane composition alters free fatty acid tolerance in Escherichia coli[J]. PLoS One, 2013, 8(1):e54031. [6] Besada-Lombana PB, Fernandez-Moya R, Fenster J, et al.Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid[J]. Biotechnol Bioeng, 2017, 114(7):1531-1538. [7] Sherkhanov S, Korman TP, Bowie JU.Improving the tolerance of Escherichia coli to medium-chain fatty acid production[J]. Metab Eng, 2014, 25:1-7. [8] Nasution O, Lee YM, Kim E, et al.Overexpression of OLE1 enhances stress tolerance and constitutively activates the MAPK HOG pathway in Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2017, 114(3):620-631. [9] Velly H, Bouix M, Passot S, et al.Cyclopropanation of unsaturated fatty acids and membrane rigidification improve the freeze-drying resistance of Lactococcus lactis subsp. lactis TOMSC161[J]. Appl Microb Biotechnol, 2015, 99(2):907-918. [10] Yang X, Hang X, Zhang M, et al.Relationship between acid tolerance and cell membrane in Bifidobacterium, revealed by comparative analysis of acid-resistant derivatives and their parental strains grown in medium with and without Tween 80[J]. Appl Microb Biotechnol, 2015, 99(12):5227-5236. [11] Abe F, Hiraki T.Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes, 2009, 1788(3):743-752. [12] Kamthan A, Kamthan M, Datta A.Expression of C-5 sterol desaturase from an edible mushroom in fisson yeast enhances its ethanol and thermotolerance[J]. PLoS One, 2017, 12(3):e0173381. [13] Nakayama T, Zhang-Akiyama QM. pqiABC and yebST, putative mce operons of Escherichia coli, encode transport pathways and contribute to membrane integrity[J]. Journal of Bacteriology, 2017, 199(1):e00606-e00616. [14] Si HM, Zhang F, Wu AN, et al.DNA microarray of global transcription factor mutant reveals membrane-related proteins involved in n-butanol tolerance in Escherichia coli[J]. Biotechnology for Biofuels, 2016, 9(1):114. [15] Tan Z, Black W, Yoon JM, et al.Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of FadL and OmpF[J]. Microb Cell Fact, 2017, 16(1):38. [16] Shin HY, Nijland JG, de Waal PP, et al. The amino-terminal tail of Hxt11 confers membrane stability to the Hxt2 sugar transporter and improves xylose fermentation in the presence of acetic acid[J]. Biotechnol Bioeng, 2017, 114(9):1937-1945. [17] Dunlop MJ, Dossani ZY, Szmidt HL, et al.Engineering microbial biofuel tolerance and export using efflux pumps[J]. Molecular Systems Biology, 2011, 7(1):487. [18] Ling H, Chen B, Kang A, et al.Transcriptome response to alkane biofuels in Saccharomyces cerevisiae:identification of efflux pumps involved in alkane tolerance[J]. Biotechnology for Biofuels, 2013, 6(1):95. [19] Foo JL, Jensen HM, Dahl RH, et al.Improving microbial biogasoline production in Escherichia coli using tolerance engineering[J]. MBio, 2014, 5(6):e01932-14. [20] Mingardon F, Clement C, Hirano K, et al.Improving olefin tolerance and production in E. coli using native and evolved AcrB[J]. Biotechnol Bioeng, 2015, 112(5):879-888. [21] Foo JL, Leong SSJ.Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules[J]. Biotechnology for Biofuels, 2013, 6(1):81. [22] Fisher MA, Boyarskiy S, Yamada MR, et al.Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol[J]. ACS Synthetic Biology, 2014, 3(1):30-40. [23] Boyarskiy S, Lopez SD, Kong N, et al.Transcriptional feedback regulation of efflux protein expression for increased tolerance to and production of n-butanol[J]. Metab Eng, 2016, 33:130-137. [24] Kerner MJ, Naylor DJ, Ishihama Y, et al.Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli[J]. Cell, 2005, 122(2):209-220. [25] Horwich AL, Low KB, Fenton WA, et al.Folding in vivo of bacterial cytoplasmic proteins:role of GroEL[J]. Cell, 1993, 74(5):909-917. [26] Suo Y, Luo S, Zhang Y, et al.Enhanced butyric acid tolerance and production by Class I heat shock protein-overproducing Clostridium tyrobutyricum ATCC 25755[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(8):1145-1156. [27] Suo Y, Fu H, Ren M, et al.Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing Class I heat shock protein GroESL[J]. Bioresource Technology, 2018, 250:691-698. [28] Zhang R, Cao Y, Liu W, et al.Improving phloroglucinol tolerance and production in Escherichia coli by GroESL overexpression[J]. Microb Cell Fact, 2017, 16(1):227. [29] Lee S, Lee JH, Mitchell RJ.Analysis of Clostridium beijerinckii NCIMB 8052’s transcriptional response to ferulic acid and its application to enhance the strain tolerance[J]. Biotechnology for Biofuels, 2015, 8(1):68. [30] Liao Z, Zhang Y, Luo S, et al.Improving cellular robustness and butanol titers of Clostridium acetobutylicum ATCC824 by introducing heat shock proteins from an extremophilic bacterium[J]. J Biotechnol, 2017, 252:1-10. [31] Luan G, Dong H, Zhang T, et al.Engineering cellular robustness of microbes by introducing the GroESL chaperonins from extremophilic bacteria[J]. J Biotechnol, 2014, 178:38-40. [32] Yu A, Li P, Tang T, et al.Roles of Hsp70s in stress responses of microorganisms, plants, and animals[J]. BioMed Research International, 2015, 2015:510319. [33] Vahdani F, Ghafouri H, Sarikhan S, et al.Molecular cloning, expression, and functional characterization of 70-kDa heat shock protein, DnaK, from Bacillus halodurans[J]. International Journal of Biological Macromolecules, 2019, 137:151-159. [34] Sugimoto S, Higashi C, Matsumoto S, et al.Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK[J]. Appl Environ Microbiol, 2010, 76(13):4277-4285. [35] Kumar M, Prasanna R, Lone S, et al.Cloning and expression of dnaK gene from Bacillus pumilus of hot water spring origin[J]. Applied & Translational Genomics, 2014, 3(1):14-20. [36] Xu X, Jiao L, Feng X, et al.Heterogeneous expression of DnaK gene from Alicyclobacillus acidoterrestris improves the resistance of Escherichia coli against heat and acid stress[J]. AMB Express, 2017, 7(1):1-7. [37] Kobayashi Y, Ohtsu I, Fujimura M, et al.A mutation in dnaK causes stabilization of the heat shock sigma factor σ32, accumulation of heat shock proteins and increase in toluene-resistance in Pseudomonas putida[J]. Environmental Microbiology, 2011, 13(8):2007-2017. [38] Tomoyasu T, Tabata A, et al.Role of Streptococcus intermedius DnaK chaperone system in stress tolerance and pathogenicity[J]. Cell Stress Chaperones, 2012, 17(1):41-55. [39] Wang J, Wang W, Wang H, et al.Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic bacillus strains[J]. Appl Microb Biotechnol, 2019, 103(11):4455-4465. [40] Khaskheli GB, Zuo FL, Yu R, et al.Overexpression of small heat shock protein enhances heat-and salt-stress tolerance of Bifidobacterium longum NCC2705[J]. Current Microbiology, 2015, 71(1):8-15. [41] Ezemaduka AN, Yu J, Shi X, et al.A small heat shock protein enables Escherichia coli to grow at a lethal temperature of 50 C conceivably by maintaining cell envelope integrity[J]. Journal of Bacteriology, 2014, 196(11):2004-2011. [42] Horváth I, Glatz A, Varvasovszki V, et al.Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803:identification of hsp17 as a “fluidity gene”[J]. PNAS, 1998, 95(7):3513-3518. [43] Zhang H, Fu X, Jiao W, et al.The association of small heat shock protein Hsp16. 3 with the plasma membrane of Mycobacterium tuberculosis:dissociation of oligomers is a prerequisite[J]. Biochem Biophys Res Commun, 2005, 330(4):1055-1061. [44] Liu Y, Zhang G, Sun H, et al.Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices[J]. Bioresource Technology, 2014, 170:38-44. [45] Luo J, Song Z, Ning J, et al.The ethanol-induced global alteration in Arthrobacter simplex and its mutants with enhanced ethanol tolerance[J]. Appl Microb Biotechnol, 2018, 102(21):9331-9350. [46] Wu C, Zhang J, Du G, et al.Heterologous expression of Lactobacillus casei RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress[J]. Bioresource Technology, 2013, 143:238-241. [47] Kim D, Hahn JS.Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress[J]. Appl Environ Microbiol, 2013, 79(16):5069-5077. [48] Chubukov V, Mingardon F, Schackwitz W, et al.Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase AhpC[J]. Appl Environ Microbiol, 2015, 81(14):4690-4696. [49] Shi X, Zou Y, Chen Y, et al.Overexpression of a water-forming NADH oxidase improves the metabolism and stress tolerance of Saccharomyces cerevisiae in aerobic fermentation[J]. Frontiers in Microbiology, 2016, 7:1427. [50] Cheng H, Sun Y, Chang H, et al.Compatible solutes adaptive alterations in Arthrobacter simplex during exposure to ethanol, and the effect of trehalose on the stress resistance and biotransformation performance[J]. Bioprocess Biosys Eng, 2020, 43(5):895-908. [51] Nguyen ADQ, Kim YG, Kim SB, et al.Improved tolerance of recombinant Escherichia coli to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes(otsBA)for the production of β-carotene[J]. Bioresource Technology, 2013, 143:531-537. [52] Jiang L, Cui H, Zhu L, et al.Enhanced propionic acid production from whey lactose with immobilized Propionibacterium acidipropionici and the role of trehalose synthesis in acid tolerance[J]. Green Chemistry, 2015, 17(1):250-259. [53] Carvalho AL, Cardoso FS, Bohn A, et al.Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance[J]. Appl Environ Microbiol, 2011, 77(12):4189-4199. [54] An MZ, Tang YQ, Mitsumasu K, et al.Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase[J]. Biotechnology Letters, 2011, 33(7):1367-1374. [55] Jung YJ, Park HD.Antisense-mediated inhibition of acid trehalase(ATH1)gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae[J]. Biotechnology Letters, 2005, 27(23-24):1855-1859. [56] Divate NR, Chen GH, Wang PM, et al.Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose[J]. Bioengineered, 2016, 7(6):445-458. [57] Wang PM, Zheng DQ, Chi XQ, et al.Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains[J]. Bioresour Technol, 2014, 152:371-376. [58] Mahmud SA, Hirasawa T, Shimizu H.Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses[J]. Journal of Bioscience and Bioengineering, 2010, 109(3):262-266. [59] Sun X, Zhang J, Fan ZH, et al.MAL62 overexpression enhances freezing tolerance of Baker’s yeast in lean dough by enhancing Tps1 activity and maltose metabolism[J]. Journal of Agricultural and Food Chemistry, 2019, 67(32):8986-8993. [60] Takagi H, Takaoka M, Kawaguchi A, et al.Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2005, 71(12):8656-8662. [61] Ventura JRS, Hu H, Jahng D.Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes[J]. Appl Microb Biotechnol, 2013, 97(16):7505-7516. [62] Zhang MM, Xiong L, Tang YJ, et al.Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes[J]. Biotechnology for Biofuels, 2019, 12(1):116. [63] Cunha JT, Costa CE, Ferraz L, et al.HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption:unravelling the underlying mechanisms[J]. Appl Microb Biotechnol, 2018, 102(10):4589-4600. [64] Hasegawa S, Ogata T, Tanaka K, et al.Overexpression of vacuolar H+-ATPase-related genes in bottom-fermenting yeast enhances ethanol tolerance and fermentation rates during high-gravity fermentation[J]. Journal of the Institute of Brewing, 2012, 118(2):179-185. [65] Lam FH, Ghaderi A, Fink GR, et al.Engineering alcohol tolerance in yeast[J]. Science, 2014, 346(6205):71-75. [66] Xu M, Zhao J, Yu L, et al.Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production[J]. Appl Microb Biotechnol, 2015, 99(2):1011-1022. [67] Guerreiro JF, Muir A, Ramachandran S, et al.Sphingolipid biosynthesis upregulation by TOR complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress[J]. Biochemical Journal, 2016, 473(23):4311-4325. [68] Niles BJ, Joslin AC, Fresques T, et al.TOR complex 2-Ypk1 signaling maintains sphingolipid homeostasis by sensing and regulating ROS accumulation[J]. Cell Reports, 2014, 6(3):541-552. [69] Panadero J, Hernández-López MJ, Prieto JA, et al.Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker’s yeast[J]. Appl Environ Microbiol, 2007, 73(15):4824-4831. [70] Yan D, Lin X, Qi Y, et al.Crz1p regulates pH homeostasis in Candida glabrata by altering membrane lipid composition[J]. Appl Environ Microbiol, 2016, 82(23):6920-6929. [71] Sakihama Y, Hasunuma T, Kondo A.Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering, 2015, 119(3):297-302. [72] Oh HY, Lee JO, Kim OB.Increase of organic solvent tolerance of Escherichia coli by the deletion of two regulator genes, fadR and marR[J]. Appl Microb Biotechnol, 2012, 96(6):1619-1627. [73] Jin T, Rover MR, Petersen EM, et al.Damage to the microbial cell membrane during pyrolytic sugar utilization and strategies for increasing resistance[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(9):1279-1292. [74] Qi Y, Liu H, Yu J, et al.Med15B regulates acid stress response and tolerance in Candida glabrata by altering membrane lipid composition[J]. Appl Environ Microbiol, 2017, 83(18):e01128-17. [75] Lin X, Qi Y, Yan D, et al.CgMED3 changes membrane sterol composition to help Candida glabrata tolerate low-pH stress[J]. Appl Environ Microbiol, 2017, 83(17):e00972-17. [76] Cotter PD, Gahan CGM, Hill C.A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid[J]. Molecular Microbiology, 2001, 40(2):465-475. [77] Pereira CI, Matos D, San Romão MV, et al.Dual role for the tyrosine decarboxylation pathway in Enterococcus faecium E17:response to an acid challenge and generation of a proton motive force[J]. Appl Environ Microbiol, 2009, 75(2):345-352. [78] Zhou Z, Liu Y, Xu P, et al.Enhancing bioremediation potential of Pseudomonas putida by developing its acid stress tolerance with glutamate decarboxylase dependent system and global regulator of extreme radiation resistance[J]. Frontiers in Microbiology, 2019, 10:2033. [79] Trip H, Mulder NL, Lolkema JS.Improved acid stress survival of Lactococcus lactis expressing the histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524[J]. Journal of Biological Chemistry, 2012, 287(14):11195-11204. [80] Guan N, Li J, Shin H, et al.Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii[J]. Biotechnol Bioeng, 2016, 113(6):1294-1304. |
[1] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[2] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[3] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[4] | ZHOU Lin, LIANG Xuan-ming, ZHAO Lei. Biosynthesis of Natural Carotenoids:Progress and Perspective [J]. Biotechnology Bulletin, 2022, 38(7): 119-127. |
[5] | GUO Xiao-zhen, ZHANG Xue-fu. Analysis of the Development Trend in the Field of Plant Synthetic Biology [J]. Biotechnology Bulletin, 2022, 38(2): 289-296. |
[6] | ZHAO Yu-xue, WANG Yun, YU Lu-yao, LIU Jing-jing, SI Jin-ping, ZHANG Xin-feng, ZHANG Lei. Structure and Application of C-glycosyltransferases in Plants [J]. Biotechnology Bulletin, 2022, 38(10): 18-28. |
[7] | YE Min, GAO Jiao-qi, ZHOU Yong-jin. Engineering Non-conventional Yeast Cell Factory for the Biosynthesis of Natural Products [J]. Biotechnology Bulletin, 2021, 37(8): 12-24. |
[8] | ZHANG Chan, YAO Guang-long, ZHANG Jun-feng, YU Jing, YANG Dong-mei, CHEN Ping, WU You-gen. Research Progress on Patchoulol Molecular Regulation and Synthetic Biology in Pogostemon cablin [J]. Biotechnology Bulletin, 2021, 37(8): 55-64. |
[9] | YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang. Dynamic Control:An Efficient Strategy for Metabolically Engineering Microbial Cell Factories [J]. Biotechnology Bulletin, 2020, 36(6): 1-12. |
[10] | ZHáNG Hui, TIáN Fáng-fáng, WU Yi. Synthetic Yeást Genome SCRáMbLE [J]. Biotechnology Bulletin, 2020, 36(4): 13-18. |
[11] | CáO Yán-ting, LIU Yán-feng, LI Jiáng-huá, LIU Long, DU Guo-cheng. ádvánces of Improving the Efficiency of Chemicál Biosynthesis Básed on Cell Subpopulátion Regulátion [J]. Biotechnology Bulletin, 2020, 36(4): 19-25. |
[12] | LI Jia-xiu, CAI Qian-ru, WU Jie-qun. Research Progresses on the Synthetic Biology of Terpenes in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2020, 36(12): 199-207. |
[13] | LIU Xin-ping, TAN Yu-meng, ZHANG Xue, FENG Yan, YANG Guang-yu. Biosynthesis of Ganglioside Oligosaccharide Fluoride in Escherichia coli [J]. Biotechnology Bulletin, 2019, 35(8): 162-169. |
[14] | LIU Yang-er, GUO Ming-zhang, DU Ruo-xi, HE Xiao-yun, HUANG Kun-lun, XU Wen-tao. Advances and Prospects of Synthetic Biology in Lactic Acid Bacteria [J]. Biotechnology Bulletin, 2019, 35(8): 193-204. |
[15] | LUO Li. Synthetic Biology Research of Plant Nitrogen-fixation Organelle [J]. Biotechnology Bulletin, 2019, 35(10): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||