Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (6): 73-84.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1038
Previous Articles Next Articles
CHEN Zheng-qi(), YU Jin-feng, FENG Yun-li, MA Ming, YUE Wan-song, GUO Xiang()
Received:
2020-08-17
Online:
2021-06-26
Published:
2021-07-08
Contact:
GUO Xiang
E-mail:617866957@qq.com;guoxkm@yeah.net
CHEN Zheng-qi, YU Jin-feng, FENG Yun-li, MA Ming, YUE Wan-song, GUO Xiang. Transcriptome Different Analysis of Tremella aurantialba at Mycelium and Fruiting Body Stages[J]. Biotechnology Bulletin, 2021, 37(6): 73-84.
时期 Stage | 样品编号 Sample No. | RNA浓度 RNA concentration/(μg·μL-1) | A260/A280 | A260/A230 | RNA完整度 RNA integrity number (RIN) |
---|---|---|---|---|---|
菌丝体期 Mycelium stage | TH1 | 1 216.10 | 2.09 | 1.92 | 9.00 |
TH2 | 812.70 | 2.09 | 2.00 | 9.80 | |
TH3 | 837.80 | 2.06 | 1.43 | 8.80 | |
子实体期 Fruiting body stage | TS1 | 992.70 | 2.09 | 1.89 | 9.60 |
TS2 | 559.00 | 2.10 | 1.63 | 9.70 | |
TS3 | 633.10 | 1.96 | 1.56 | 9.60 |
Table 1 Total RNA detection from different development stage of T. aurantialba
时期 Stage | 样品编号 Sample No. | RNA浓度 RNA concentration/(μg·μL-1) | A260/A280 | A260/A230 | RNA完整度 RNA integrity number (RIN) |
---|---|---|---|---|---|
菌丝体期 Mycelium stage | TH1 | 1 216.10 | 2.09 | 1.92 | 9.00 |
TH2 | 812.70 | 2.09 | 2.00 | 9.80 | |
TH3 | 837.80 | 2.06 | 1.43 | 8.80 | |
子实体期 Fruiting body stage | TS1 | 992.70 | 2.09 | 1.89 | 9.60 |
TS2 | 559.00 | 2.10 | 1.63 | 9.70 | |
TS3 | 633.10 | 1.96 | 1.56 | 9.60 |
Sample | Clean reads | Clean bases | Error rate/% | Q20/% | Q30/% | GC content/% |
---|---|---|---|---|---|---|
TH1 | 34 048 936 | 5 075 868 853 | 0.0235 | 98.68 | 95.69 | 53.66 |
TH2 | 37 112 666 | 5 555 268 826 | 0.0235 | 98.68 | 95.66 | 53.96 |
TH3 | 32 225 668 | 4 822 316 713 | 0.0236 | 98.61 | 95.48 | 53.93 |
TS1 | 55 619 412 | 8 333 444 436 | 0.0231 | 98.82 | 96.06 | 56.84 |
TS2 | 45 348 528 | 6 790 586 173 | 0.0232 | 98.75 | 95.94 | 56.37 |
TS3 | 49 513 414 | 7 408 302 390 | 0.0236 | 98.64 | 95.58 | 56.22 |
Table 2 Summary of transcriptome sequencing data and transcriptome assembly
Sample | Clean reads | Clean bases | Error rate/% | Q20/% | Q30/% | GC content/% |
---|---|---|---|---|---|---|
TH1 | 34 048 936 | 5 075 868 853 | 0.0235 | 98.68 | 95.69 | 53.66 |
TH2 | 37 112 666 | 5 555 268 826 | 0.0235 | 98.68 | 95.66 | 53.96 |
TH3 | 32 225 668 | 4 822 316 713 | 0.0236 | 98.61 | 95.48 | 53.93 |
TS1 | 55 619 412 | 8 333 444 436 | 0.0231 | 98.82 | 96.06 | 56.84 |
TS2 | 45 348 528 | 6 790 586 173 | 0.0232 | 98.75 | 95.94 | 56.37 |
TS3 | 49 513 414 | 7 408 302 390 | 0.0236 | 98.64 | 95.58 | 56.22 |
序列长度 Sequence length/bp | 序列数量 Number of sequence | 百分率 Percentage/% |
---|---|---|
0-500 | 44 956 | 57 |
501-1 000 | 13 467 | 17 |
1 001-1 500 | 6 068 | 8 |
1 501-2 000 | 4 049 | 5 |
2 001-2 500 | 2 760 | 4 |
2 501-3 000 | 1 809 | 2 |
3 001-3 500 | 1 331 | 2 |
3 501-4 000 | 976 | 1 |
4 001-4 500 | 679 | 1 |
>4 500 | 2 106 | 3 |
Table 3 Length distribution of ungene from T. aurantialba
序列长度 Sequence length/bp | 序列数量 Number of sequence | 百分率 Percentage/% |
---|---|---|
0-500 | 44 956 | 57 |
501-1 000 | 13 467 | 17 |
1 001-1 500 | 6 068 | 8 |
1 501-2 000 | 4 049 | 5 |
2 001-2 500 | 2 760 | 4 |
2 501-3 000 | 1 809 | 2 |
3 001-3 500 | 1 331 | 2 |
3 501-4 000 | 976 | 1 |
4 001-4 500 | 679 | 1 |
>4 500 | 2 106 | 3 |
数据库 Database | Unigene 数量 Number of Unigene | 百分率 Percentage/% |
---|---|---|
NR | 37 263 | 47.65% |
Swiss-Prot | 34 762 | 44.45% |
Pfam | 34 765 | 44.46% |
COG | 6 703 | 8.57% |
GO | 28 016 | 35.83% |
KEGG | 26 858 | 34.34% |
Total_anno | 49 204 | 62.92% |
Total | 78 201 | 100 |
Table 4 Statistics of annotation results
数据库 Database | Unigene 数量 Number of Unigene | 百分率 Percentage/% |
---|---|---|
NR | 37 263 | 47.65% |
Swiss-Prot | 34 762 | 44.45% |
Pfam | 34 765 | 44.46% |
COG | 6 703 | 8.57% |
GO | 28 016 | 35.83% |
KEGG | 26 858 | 34.34% |
Total_anno | 49 204 | 62.92% |
Total | 78 201 | 100 |
基因编号 Gene ID | GO分类 GO annotation | 数量 Number | 校正P值 Padjust | 功能描述 Function description |
---|---|---|---|---|
GO:0055085 | BP | 341 | 0.00955341 | 跨膜转运Transmembrane transport |
GO:0051651 | BP | 33 | 0.028267743 | 胞内定位维持Maintenance of location in cell |
GO:0051235 | BP | 36 | 0.033970741 | 维持定位Maintenance of location |
GO:0044425 | CC | 2 184 | 0.000231762 | 膜部分Membrane part |
GO:0016021 | CC | 2 006 | 0.000382622 | 膜的整体部分Integral component of membrane |
GO:0031224 | CC | 2 007 | 0.000411825 | 膜的固有部分Intrinsic component of membrane |
GO:0000981 | MF | 147 | 0.000886012 | RNA聚合酶II转录因子活性、特异性DNA序列黏合 RNA polymerase II transcription factor activity,sequence-specific DNA binding |
GO:0003700 | MF | 208 | 0.001467289 | 转录因子活性、特异性DNA序列黏合 Transcription factor activity,sequence-specific DNA binding |
GO:0001071 | MF | 208 | 0.001467289 | 核酸黏合转录因子活性 Nucleic acid binding transcription factor activity |
GO:0008238 | MF | 95 | 0.003161893 | 肽链端解酶活性 Exopeptidase activity |
GO:0070008 | MF | 33 | 0.028267743 | 丝氨酸型肽链端解酶活性Serine-type exopeptidase activity |
Table 5 GO enrichment analysis of DEGs
基因编号 Gene ID | GO分类 GO annotation | 数量 Number | 校正P值 Padjust | 功能描述 Function description |
---|---|---|---|---|
GO:0055085 | BP | 341 | 0.00955341 | 跨膜转运Transmembrane transport |
GO:0051651 | BP | 33 | 0.028267743 | 胞内定位维持Maintenance of location in cell |
GO:0051235 | BP | 36 | 0.033970741 | 维持定位Maintenance of location |
GO:0044425 | CC | 2 184 | 0.000231762 | 膜部分Membrane part |
GO:0016021 | CC | 2 006 | 0.000382622 | 膜的整体部分Integral component of membrane |
GO:0031224 | CC | 2 007 | 0.000411825 | 膜的固有部分Intrinsic component of membrane |
GO:0000981 | MF | 147 | 0.000886012 | RNA聚合酶II转录因子活性、特异性DNA序列黏合 RNA polymerase II transcription factor activity,sequence-specific DNA binding |
GO:0003700 | MF | 208 | 0.001467289 | 转录因子活性、特异性DNA序列黏合 Transcription factor activity,sequence-specific DNA binding |
GO:0001071 | MF | 208 | 0.001467289 | 核酸黏合转录因子活性 Nucleic acid binding transcription factor activity |
GO:0008238 | MF | 95 | 0.003161893 | 肽链端解酶活性 Exopeptidase activity |
GO:0070008 | MF | 33 | 0.028267743 | 丝氨酸型肽链端解酶活性Serine-type exopeptidase activity |
通路编号 Pathway ID | 数目 Number | 校正P值 Padjust | 类别 Category | 通路名称 Description |
---|---|---|---|---|
map00564 | 90 | 0.000541147 | 脂类代谢 | 甘油磷脂代谢 |
map04011 | 88 | 0.011542045 | 信号传导 | 丝裂原活化蛋白激酶信号通路 |
map00280 | 80 | 0.024160902 | 氨基酸代谢 | 缬氨酸,亮氨酸,异亮氨酸降解 |
map04111 | 95 | 0.025878175 | 细胞生长和凋亡 | 细胞周期 |
map00500 | 87 | 0.026411924 | 碳水化合物代谢 | 淀粉和蔗糖代谢 |
map00460 | 30 | 0.029964648 | 其他氨基酸代谢 | 氰氨基酸代谢 |
map00600 | 41 | 0.048546228 | 脂类代谢 | 鞘磷脂代谢 |
map00430 | 14 | 0.049513725 | 其他氨基酸代谢 | 牛磺酸和氨乙基亚磺酸代谢 |
Table 6 KEGG pathway enrichment analysis of DEGs
通路编号 Pathway ID | 数目 Number | 校正P值 Padjust | 类别 Category | 通路名称 Description |
---|---|---|---|---|
map00564 | 90 | 0.000541147 | 脂类代谢 | 甘油磷脂代谢 |
map04011 | 88 | 0.011542045 | 信号传导 | 丝裂原活化蛋白激酶信号通路 |
map00280 | 80 | 0.024160902 | 氨基酸代谢 | 缬氨酸,亮氨酸,异亮氨酸降解 |
map04111 | 95 | 0.025878175 | 细胞生长和凋亡 | 细胞周期 |
map00500 | 87 | 0.026411924 | 碳水化合物代谢 | 淀粉和蔗糖代谢 |
map00460 | 30 | 0.029964648 | 其他氨基酸代谢 | 氰氨基酸代谢 |
map00600 | 41 | 0.048546228 | 脂类代谢 | 鞘磷脂代谢 |
map00430 | 14 | 0.049513725 | 其他氨基酸代谢 | 牛磺酸和氨乙基亚磺酸代谢 |
[1] | 戴玉成, 周丽伟, 杨祝良, 等. 中国食用菌名录[J]. 菌物学报, 2010, 29(1):1-21. |
Dai YC, Zhou LW, Yang ZL, et al. A revised checklist of edible fungi in China[J]. Mycosystema, 2010, 29(1):1-21. | |
[2] | 刘正南, 郑淑芳. 金耳的经济价值和开发利用状况[J]. 中国食用菌, 1995, 14(1):23-24. |
Liu ZN, Zheng SF. The economic value and utilization status of Tremella aurantialba[J]. Edble and Medicinal Mushrooms, 1995, 14(1):23-24. | |
[3] | 何容, 罗晓莉, 李建英, 等. 金耳研究现状与展望[J]. 食药用菌, 2019, 27(1):47-53. |
He R, Luo XL, Li JY, et al. Research status and prospect of Tremella aurantialba[J]. Edble and Medicinal Mushrooms, 2019, 27(1):47-53. | |
[4] | 刘欣, 刘虹, 赵照林, 等. 金耳栽培条件的初步研究[J]. 中国食用菌, 2019(5):15-17. |
Liu X, Liu H, Zhao ZL, et al. Preliminary study on cultivation condition of Tremella aurantialba[J]. Edble and Medicinal Mushrooms, 2019, 38(5):15-17. | |
[5] | 唐松明, 何俊, 张小雷, 等. 金耳栽培技术研究进展[J]. 中国食用菌, 2018, 37, (4):1-4. |
Tang SM, He J, Zhang XL, et al. Research advances in artificial cultivation of Tremella aurantialba[J]. Edble and Medicinal Mushrooms, 2018, 37(4):1-4. | |
[6] |
Ohm RA, De Jong JF, Lugones LG, et al. Genome sequence of the model mushroom Schizophyllum commune[J]. Nature Biotechnology, 2010, 28(9):957-963.
doi: 10.1038/nbt.1643 URL |
[7] | Stajich JE, Wilke SK, Ahrén D, et al. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea(Coprinus cinereus)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26):11889-11894. |
[8] | Chen S, Xu J, Liu C, et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum[J]. Nature Communications, 2012, 26(3):913. |
[9] |
Zhong MT, Liu BL, Wang X, et al. De novo characterization of Lentinula edodes C91-3 transcriptome by deep Solexa sequencing[J]. Biochemical and Biophysical Research Communications, 2013, 431(1):111-115.
doi: 10.1016/j.bbrc.2012.12.065 URL |
[10] |
Wang W, Liu F, Jiang Y, et al. The multigene family of fungal laccases and their expression in the white rot basidiomycete Flammulina velutipes[J]. Gene, 2015, 563(2):142-149.
doi: 10.1016/j.gene.2015.03.020 pmid: 25776201 |
[11] |
Lu YP, Chen RL, Long Y, et al. A jacalin-related lectin regulated the formation of aerial mycelium and fruiting body in Flammulina velutipes[J]. International Journal of Molecular Sciences, 2016, 17(12):1884.
doi: 10.3390/ijms17121884 URL |
[12] |
Alagna F, D'Agostino N, Torchia L, et al. Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development[J]. BMC Genomics, 2009, 10(1):399.
doi: 10.1186/1471-2164-10-399 URL |
[13] |
Sun C, Li Y, Wu Q, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynjournal[J]. BMC Genomics, 2010, 11(1):262.
doi: 10.1186/1471-2164-11-262 URL |
[14] |
Wang W, Wang Y, Zhang Q, et al. Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing[J]. BMC Genomics, 2009, 10(1):465.
doi: 10.1186/1471-2164-10-465 URL |
[15] |
Wang Z, Gerstein M, Snyder M . RNA-Seq:a revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2010, 10(1):57-63.
doi: 10.1038/nrg2484 URL |
[16] |
Yu GJ, Wang M, Huang J, et al. Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome[J]. PLoS One, 2012, 7(8):e44031.
doi: 10.1371/journal.pone.0044031 URL |
[17] | Huang Y, Wu X, Jian D, et al. De novo transcriptome analysis of a medicinal fungi Phellinus linteus and identification of SSR markers[J]. Biotechnology & Biotechnological Equipment, 2015, 29(2):395-403. |
[18] | 王威, 丑天胜, 刘芳, 等. 金针菇单、双核菌丝差异表达基因分析[J]. 菌物学报, 2015, 34(4):683-693. |
Wang W, Chou TS, Liu F, et al. Comparison of gene expression patterns between the monokaryotic and dikaryotic mycelia of Flammulina velutipes[J]. Mycosystema, 2015, 34(4):683-693. | |
[19] | 吴小梅, 张昕, 李南羿. 双孢蘑菇子实体不同发育时期的转录组分析[J]. 菌物学报, 2017, 36(2):193-203. |
Wu XM, Zhang X, Li NY. Transcriptome analysis of Agaricus bisp-orus fruiting at different stages[J]. Mycosystema, 2017, 36(2):193-203. | |
[20] |
Plaza DF, Lin CW, van der Velden NSJ, et al. Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development[J]. BMC Genomics, 2014, 15(1):492.
doi: 10.1186/1471-2164-15-492 URL |
[21] |
Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29:644-652.
doi: 10.1038/nbt.1883 URL |
[22] |
Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12:323.
doi: 10.1186/1471-2105-12-323 URL |
[23] |
Bray NL, Pimentel H, Melsted P, et al. Near-optimal probabilistic RNA-seq quantification[J]. Nature Biotechnology, 2016, 34(5):525-527.
doi: 10.1038/nbt.3519 URL |
[24] | Patro R, Duggal G, Kingsford C. Salmon:Accurate, versatile and ultrafast quantification from RNA-seq data using lightweight-alignment[J]. Bioxiv, 2015. https//doi.org/10.1101/021592. |
[25] |
Martinez D, Berka RM, Henrissat B, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei(syn. Hypocrea jecorina)[J]. Nature Biotechnology, 2008, 26(5):553.
doi: 10.1038/nbt1403 URL |
[26] |
Conesa A, Madrigal P, Tarazona S, et al. A survey of best practices for RNA-seq data analysis[J]. Genome Biol, 2016, 17(1):13.
doi: 10.1186/s13059-016-0881-8 URL |
[27] |
Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28:511-515.
doi: 10.1038/nbt.1621 URL |
[28] |
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550.
doi: 10.1186/s13059-014-0550-8 URL |
[29] | Tang H, Klopfenstein D, Pedersen B, et al. GOATOOLS:tools for gene ontology[J]. Zenodo, 2015. https://zendo.org/record/31628/export/ison#.YAD_mDNrwuo. |
[30] | 宋志强, 丁祥, 唐贤, 等. 松乳菇子实体两个发育时期的转录组分析[J]. 浙江农业学报, 2020, 32(2):337-347. |
Song ZQ, Ding X, Tang X, et al. Transcriptome analysis of fruiting bodies of Lactarius deliciosus at two developmental stages[J]. Acta Agriculturae Zhejiangensis, 2020, 32(2):337-347. | |
[31] | 杨宁, 肖桂林. 真核生物RNA聚合酶II的研究进展[J]. 国际病理科学与临床杂志, 2005(4):55-57. |
Yang N, Xiao GL. Research progress of eukaryotic RNA polymerase II[J]. Journal of International Pathologyand Clinical Medicine, 2005(4):55-57. | |
[32] | 张玉, 茆振川, 谢丙炎, 等. Ras蛋白信号途径及其对线虫生长发育的调控作用[J]. 生物技术通报, 2009(8):36-41. |
Zhang Y, Mao ZC, Xie BY, et al. Ras signal transduction pathway and its regulation to growth and developments of nematode[J]. Biotechnology Bulletin, 2009(8):36-41. | |
[33] | 宋佳. 黑曲霉ras基因功能的初步探究[D]. 哈尔滨:哈尔滨工业大学, 2018. |
Song J. Preliminary study on function of ras gene from Aspergillus niger[D]. Harbin:Harbin Institute of Tecnology, 2018. | |
[34] | 吕子全, 郭非凡. 内源性代谢分子——亮氨酸调节机体生理功能[J]. 生理科学进展, 2012(5):19-22. |
Lv ZQ, Guo FF. The endogenous metabolic molecule-leucine regulates the body’s physiological functions[J]. Progress in Physiological Sciences, 2012(5):19-22. | |
[35] | 杨霞, 叶金云, 周志金, 等. 中华绒螯蟹幼蟹对亮氨酸和异亮氨酸的需要量[J]. 水生生物学报, 2014(6):1062-1070. |
Yang X, Ye JY, Zhou ZJ, et al. Study on the optimal levels of dietary leucine and isoleucine for juvenile Chinese mitten crabs, eriocheir sinensis[J]. Acta Hydrobiological Sinica, 2014(6):1062-1070. | |
[36] |
Takemoto D, Kamakura S, Saikia S, et al. Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal NADPH oxidase complex[J]. Proceedings of the National Academy of Sciences, 2011, 108(7):2861-2866.
doi: 10.1073/pnas.1017309108 URL |
[37] | 陈辉, 郝海波, 赵静, 等信息素信号通路基因在斑玉蕈生长发育过程中的差异表达[J]. 菌物学报, 2021, 40(1):1-10. |
Chen H, Hao HB, Zhao J, et al. Differential expression of pheromone signal pathway genes during Hypsizygus marmoreus growth and development[J]. Mycosystema, 2021, 40(1):1-10. | |
[38] | 宋瑞龙, 徐天祺, 梁琰, 等. Cdc42调控细胞骨架影响破骨细胞分化的研究[J]. 畜牧与兽医, 2020, 52(3):50-55. |
Song RL, Xu TQ, Liang Y, et al. The effect of Cdc42 on osteoclast differentiation by regulating the cytoskeleton[J]. Animal Husbandry &Veterinary Medicine, 2020, 52(3):50-55. | |
[39] | 安娜, 张林波, 马伟, 等. Ste20-like kinase在细胞分裂过程中的作用研究进展[J]. 黑龙江动物繁殖, 2012(3):1-4. |
An N, Zhang LB, Ma W, et al. Research progress on the role of Ste20-like kinase in cell division[J]. Heilongjiang Journal of Animal Reproduction, 2012(3):1-4. | |
[40] |
Leng G, Song K. Direct interaction of Ste11 and Mkk1/2 through Nst1 integrates high-osmolarity glycerol and pheromone pathways to the cell wall integrity MAPK pathway[J]. FEBS Letters, 2016, 590(1):148-160.
doi: 10.1002/1873-3468.12039 URL |
[41] | Kitade Y, Sumita T, Izumitsu K, et al. MAPKK-encoding gene Ste7 in Bipolaris maydis is required for development and morphogenesis[J]. Mycoence, 2015, 56(2):150-158. |
[42] |
Saito H. Regulation of cross-talk in yeast MAPK signaling pathways[J]. Current Opinion in Microbiology, 2010, 13(6):677-683.
doi: 10.1016/j.mib.2010.09.001 URL |
[43] | 庄淼, 张智敏, 王宝腾, 等. 应用双分子荧光互补技术分析米曲霉Fus3与Ste12之间的蛋白互作[J]. 微生物学通报, 2019, 46(2):269-277. |
Zhuang M, Zhang ZM, Wang BT, et al. Interaction between Fus3 and Ste12 in Aspergillus oryzae analysed by Bimolecular fluorescence complementation[J]. Microbiology China, 2019, 46(2):269-277. | |
[44] |
Wong SHJ, Dumas B. Ste12 and Ste12-like proteins, fungal transcription factors regulating development and pathogenicity[J]. Eukaryotic Cell, 2010, 9(4):480-485.
doi: 10.1128/EC.00333-09 URL |
[1] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[2] | LOU Hui, ZHU Jin-cheng, YANG Yang, ZHANG Wei. Effects of Root Exudates in Resistant and Susceptible Varieties of Cotton on the Growths and Gene Expressions of Fusarium oxysporum [J]. Biotechnology Bulletin, 2023, 39(9): 156-167. |
[3] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[4] | FU Yu, JIA Rui-rui, HE He, WANG Liang-gui, YANG Xiu-lian. Growth Differences Among Grafted Seedlings with Two Rootstocks of Catalpa bungei and Comparative Analysis of Transcriptome [J]. Biotechnology Bulletin, 2023, 39(8): 251-261. |
[5] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
[6] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[7] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[8] | XIE Yang, XING Yu-meng, ZHOU Guo-yan, LIU Mei-yan, YIN Shan-shan, YAN Li-ying. Transcriptome Analysis of Diploid and Autotetraploid in Cucumber Fruit [J]. Biotechnology Bulletin, 2023, 39(3): 152-162. |
[9] | HU Li-li, LIN Bo-rong, WANG Hong-hong, CHEN Jian-song, LIAO Jin-ling, ZHUO Kan. Transcriptome and Candidate Effectors Analysis of Pratylenchus brachyurus [J]. Biotechnology Bulletin, 2023, 39(3): 254-266. |
[10] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[11] | XU Jun, YE Yu-qing, NIU Ya-jing, HUANG He, ZHANG Meng-meng. Transcriptome Analysis of Rhizome Development in Chrysanthemum× × morifolium [J]. Biotechnology Bulletin, 2023, 39(10): 231-245. |
[12] | LUO Hao-tian, WANG Long, WANG Yu-qian, WANG Yue, LI Jia-zhen, YANG Meng-ke, ZHANG Jie, DENG Xin, WANG Hong-yan. Genome-wide Identification and Expression Analysis of the RNAi-related Gene Families in Setaria viridis [J]. Biotechnology Bulletin, 2023, 39(1): 175-186. |
[13] | XIN Jian-pan, LI Yan, ZHAO Chu, TIAN Ru-nan. Transcriptome Sequencing in the Leaves of Pontederia cordata with Cadmium Exposure and Gene Mining in Phenypropanoid Pathways [J]. Biotechnology Bulletin, 2022, 38(6): 198-210. |
[14] | XU Jin, LI Tao, LI Chu-lin, ZHU Shun-ni, WANG Zhong-ming, XIANG Wen-zhou. Effects of Temperature on the Growth,Total Lipid and Eicosapentaenoic Acid Synthesis of Eustigmatos sp. [J]. Biotechnology Bulletin, 2022, 38(6): 261-271. |
[15] | XIONG He-li, SHA Qian, LIU Shao-na, XIANG De-cai, ZHANG Bin, ZHAO Zhi-yong. Application of Single-cell Transcriptome Sequencing in Animals [J]. Biotechnology Bulletin, 2022, 38(3): 226-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||