Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (8): 95-105.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0192
Previous Articles Next Articles
ZHANG Xiao-ying1,2(), MAO Mi2, WANG Hong-feng2, DING Xin-hua3, ZHU Shu-wei2, SHI Lei1()
Received:
2024-02-29
Online:
2024-08-26
Published:
2024-09-05
Contact:
SHI Lei
E-mail:xyzhxy@hotmail.com;leish@mail.hzau.edu.cn
ZHANG Xiao-ying, MAO Mi, WANG Hong-feng, DING Xin-hua, ZHU Shu-wei, SHI Lei. Effect of Immune Inducer ZNC on the Prevention and Control of Wheat Scab and the Yield of Wheat[J]. Biotechnology Bulletin, 2024, 40(8): 95-105.
Fig. 1 Plate inhibition effects of different fungicides on Fusarium graminearum Different lowercase letters indicate significant difference at the level of 0.05, The same below
处理Treatment | 施用方式Application ways | 防治效果Control efficacy |
---|---|---|
CK | 叶面喷施 Foliar spraying | / |
Z | 58.63±1.41c | |
D | 90.29±0.62a | |
A | 41.16±2.26d | |
D+Z | 91.48±0.48a | |
A+Z | 67.57±0.89b |
Table 1 Effects of different indoor pesticides on the control of wheat scab
处理Treatment | 施用方式Application ways | 防治效果Control efficacy |
---|---|---|
CK | 叶面喷施 Foliar spraying | / |
Z | 58.63±1.41c | |
D | 90.29±0.62a | |
A | 41.16±2.26d | |
D+Z | 91.48±0.48a | |
A+Z | 67.57±0.89b |
Fig. 4 Effects of different pesticides on wheat growth A: Wheat plant height. B: Wheat stem thickness. C: Wheat root length. D: Number of wheat root hairs. E: Fresh weight of wheat. F: Wheat dry weight
Fig. 5 Effects of different pesticides on the antioxidant enzyme activity in wheat A: Content of superoxide dismutase in wheat. B: Content of peroxidase in wheat. C: Content of catalase in wheat
Fig. 6 Field inoculation and incidence of wheat scab A-B: Keeping moisture by bag in experimental plot; C: incidences of wheat ear disease treated with different pesticides
Fig. 7 Effects of different fungicides on the disease index and relative control effects of wheat scab A: Effect of different fungicides on the disease index of wheat scab. B: Effect of different fungicides on the relative control of wheat scab
Fig. 8 Effects of different fungicides on wheat yield and its constituent factors A: Wheat yield. B: Number of wheat ears. C: Number of grains per spike of wheat. D: 1 000 grain weight of wheat
Fig. 9 Effect of different fungicides on wheat grain quality and DON content in grains A: Dry matter content in wheat grains. B: Starch content in wheat grains. C: Protein content in wheat grains. D: Content of vomitoxin in wheat grains
[1] | Cendoya E, Nichea MJ, Monge MDP, et al. Effect of fungicides commonly used for Fusarium head blight management on growth and fumonisin production by Fusarium proliferatum[J]. Rev Argent Microbiol, 2021, 53(1): 64-74. |
[2] | Mengesha GG, Abebe SM, Lera ZT, et al. Integration of host resistance, fungicides, and spray frequencies for managing Fusarium head blight of bread wheat under field conditions in southern Ethiopia[J]. Heliyon, 2021, 7(9): e07938. |
[3] | Zhang L, Wang F, Song HQ, et al. Effects of projected climate change on winter wheat yield in Henan, China[J]. J Clean Prod, 2022, 379: 134734. |
[4] | Hu SY, Qiao BW, Yang YH, et al. Optimizing nitrogen rates for synergistically achieving high yield and high nitrogen use efficiency with low environmental risks in wheat production-Evidences from a long-term experiment in the North China Plain[J]. Eur J Agron, 2023, 142: 126681. |
[5] | Miao J, Zhang GP, Zhang SJ, et al. The orange wheat blossom midge promotes fusarium head blight disease, posing a risk to wheat production in Northern China[J]. Acta Ecol Sin, 2023, 43(1): 112-116. |
[6] | Pirgozliev SR, Edwards SG, Hare MC, et al. Strategies for the control of Fusarium head blight in cereals[M]// Epidemiology of Mycotoxin Producing Fungi. Dordrecht: Springer, 2003: 731-742. |
[7] | Drakopoulos D, Kägi A, Six J, et al. The agronomic and economic viability of innovative cropping systems to reduce Fusarium head blight and related mycotoxins in wheat[J]. Agric Syst, 2021, 192: 103198. |
[8] |
Lacey E. The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles[J]. Int J Parasitol, 1988, 18(7): 885-936.
doi: 10.1016/0020-7519(88)90175-0 pmid: 3066771 |
[9] | Zhang JB, Li HP, Dang FJ, et al. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China[J]. Mycol Res, 2007, 111(Pt 8): 967-975. |
[10] | Keller MD, Bergstrom GC, Shields EJ. The aerobiology of Fusarium graminearum[J]. Aerobiologia, 2014, 30(2): 123-136. |
[11] | Wegulo SN, Baenziger PS, Hernandez Nopsa J, et al. Management of Fusarium head blight of wheat and barley[J]. Crop Prot, 2015, 73: 100-107. |
[12] |
Zhang YJ, Fan PS, Zhang X, et al. Quantification of Fusarium graminearum in harvested grain by real-time polymerase chain reaction to assess efficacies of fungicides on Fusarium head blight, deoxynivalenol contamination, and yield of winter wheat[J]. Phytopathology, 2009, 99(1): 95-100.
doi: 10.1094/PHYTO-99-1-0095 pmid: 19055440 |
[13] | Palacios SA, Del Canto A, Erazo J, et al. Fusarium cerealis causing Fusarium head blight of durum wheat and its associated mycotoxins[J]. Int J Food Microbiol, 2021, 346: 109161. |
[14] | 陈宏州, 韩凯, 杨红福, 等. 不同杀菌剂在麦穗中的消解动态及对小麦赤霉病防效评估[J]. 麦类作物学报, 2022, 42(4): 504-511. |
Chen HZ, Han K, Yang HF, et al. Analysis of dynamic degradation of different fungicides in wheat spikes and their control efficacy on Fusarium head blight[J]. J Triticeae Crops, 2022, 42(4): 504-511. | |
[15] |
Sevastos A, Kalampokis IF, Panagiotopoulou A, et al. Implication of Fusarium graminearum primary metabolism in its resistance to benzimidazole fungicides as revealed by 1H NMR metabolomics[J]. Pestic Biochem Physiol, 2018, 148: 50-61.
doi: S0048-3575(17)30395-4 pmid: 29891377 |
[16] | Yang Y, Li MX, Duan YB, et al. A new point mutation in β-tubulin confers resistance to carbendazim in Fusarium asiaticum[J]. Pestic Biochem Physiol, 2018, 145: 15-21. |
[17] |
Chen Y, Zhou MG. Characterization of Fusarium graminearum isolates resistant to both carbendazim and a new fungicide JS399-19[J]. Phytopathology, 2009, 99(4): 441-446.
doi: 10.1094/PHYTO-99-4-0441 pmid: 19271986 |
[18] | 付刘元, 陈金鹏, 王栓, 等. 禾谷镰孢菌对苯醚甲环唑的敏感性基线及与其他杀菌剂敏感性的相关性分析[J]. 农药学学报, 2021, 23(4): 694-702. |
Fu LY, Chen JP, Wang S, et al. Baseline sensitivity of Fusarium graminearum to difenoconazole and sensitivity correlation to other fungicides[J]. Chinese Journal of Pesticide Science, 2021, 23(4): 694-702. | |
[19] | Duan YB, Zhang XK, Ge CY, et al. Development and application of loop-mediated isothermal amplification for detection of the F167Y mutation of carbendazim-resistant isolates in Fusarium graminearum[J]. Sci Rep, 2014, 4: 7094. |
[20] | 邱德文. 我国植物免疫诱导技术的研究现状与趋势分析[J]. 植物保护, 2016, 42(5): 10-14. |
Qiu DW. Research status and trend analysis of plant immune induction technology in China[J]. Plant Prot, 2016, 42(5): 10-14. | |
[21] | Bacon WC, White J. Microbial endophytes[M]. Taylor and Francis; CRC Press: 2000-02-25. |
[22] | Rojas EC, Jensen B, Jørgensen HJL, et al. Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat[J]. Biol Contr, 2020, 144: 104222. |
[23] |
Mousa WK, Raizada MN. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective[J]. Front Microbiol, 2013, 4: 65.
doi: 10.3389/fmicb.2013.00065 pmid: 23543048 |
[24] | Kusari S, Hertweck C, Spiteller M. Chemical ecology of endophytic fungi: origins of secondary metabolites[J]. Chem Biol, 2012, 19(7): 792-798. |
[25] |
Kusari S, Singh S, Jayabaskaran C. Biotechnological potential of plant-associated endophytic fungi: hope versus hype[J]. Trends Biotechnol, 2014, 32(6): 297-303.
doi: 10.1016/j.tibtech.2014.03.009 pmid: 24703621 |
[26] | Hong CE, Jeong H, Jo SH, et al. A leaf-inhabiting endophytic bacterium, Rhodococcus sp. KB6, enhances sweet potato resistance to black rot disease caused by Ceratocystis fimbriata[J]. J Microbiol Biotechnol, 2016, 26(3): 488-492. |
[27] | Ding T, Su B, Chen XJ, et al. An endophytic bacterial strain isolated from Eucommia ulmoides inhibits southern corn leaf blight[J]. Front Microbiol, 2017, 8: 903. |
[28] | Verma SK, Kingsley KL, Bergen MS, et al. Fungal disease prevention in seedlings of rice(Oryza sativa)and other grasses by growth-promoting seed-associated endophytic bacteria from invasive Phragmites australis[J]. Microorganisms, 2018, 6(1): 21. |
[29] |
Shabanamol S, Sreekumar J, Jisha MS. Bioprospecting endophytic diazotrophic Lysinibacillus sphaericus as biocontrol agents of rice sheath blight disease[J]. 3 Biotech, 2017, 7(5): 337.
doi: 10.1007/s13205-017-0956-6 pmid: 28955634 |
[30] |
Feksa HR, Do Couto HTZ, Garozi R, et al. Pre- and postinfection application of strobilurin-triazole premixes and single fungicides for control of fusarium head blight and deoxynivalenol mycotoxin in wheat[J]. Crop Prot, 2019, 117: 128-134.
doi: 10.1016/j.cropro.2018.12.003 |
[31] |
Robinson MW, McFerran N, Trudgett A, et al. A possible model of benzimidazole binding to beta-tubulin disclosed by invoking an inter-domain movement[J]. J Mol Graph Model, 2004, 23(3): 275-284.
pmid: 15530823 |
[32] |
Sevastos A, Markoglou A, Labrou NE, et al. Molecular characterization, fitness and mycotoxin production of Fusarium graminearum laboratory strains resistant to benzimidazoles[J]. Pestic Biochem Physiol, 2016, 128: 1-9.
doi: 10.1016/j.pestbp.2015.10.004 pmid: 26969433 |
[33] | Lu CC, Wang QB, Jiang YK, et al. Discovery of a novel nucleoside immune signaling molecule 2'-deoxyguanosine in microbes and plants[J]. J Adv Res, 2023, 46: 1-15. |
[34] | Lu CC, Liu HF, Jiang DP, et al. Paecilomyces variotii extracts(ZNC)enhance plant immunity and promote plant growth[J]. Plant Soil, 2019, 441(1): 383-397. |
[35] | Guo XR, Xu JY, He DY, et al. Combining Paecilomyces variotii extracts and biochar for the remediation of alkaline Cd-contaminated soil[J]. Biomass Convers Biorefin, 2022. |
[36] | Cui XS, Liu SJ, Zhang LN, et al. Endophytic extract Zhinengcong alleviates heat stress-induced reproductive defect in Solanum lycopersicum[J]. Front Plant Sci, 2022, 13: 977881. |
[37] | 王庆彬, 刘治国, 聂振田, 等. 宛氏拟青霉提取物(ZNC)提高小白菜抗盐碱胁迫能力[J]. 植物生理学报, 2021, 57(6): 1291-1299. |
Wang QB, Liu ZG, Nie ZT, et al. Paecilomyces variotii extracts(ZNC)improves the salinity-alkalinity resistance of pakchoi[J]. Plant Physiol J, 2021, 57(6): 1291-1299. | |
[38] |
王庆彬, 刘治国, 彭春娥, 等. 宛氏拟青霉提取物诱导小白菜抗低温胁迫的作用机理[J]. 核农学报, 2022, 36(2): 473-480.
doi: 10.11869/j.issn.100-8551.2022.02.0473 |
Wang qb, Liu zg, Peng ce, et al. Mechanism of Paecilomyces variotli extract in inducing Pakchoi resistance to low-temperature stress[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 473-480. | |
[39] | 王晓琪, 姚媛媛, 陈宝成, 等. 宛氏拟青霉提取物增强水稻抗低温胁迫的最佳施用水平[J]. 植物营养与肥料学报, 2019, 25(12): 2133-2141. |
Wang XQ, Yao YY, Chen BC, et al. Optimum levels of Paecilomyces variotii extracts in regulating resistance of rice seedlings to low temperature stress[J]. J Plant Nutr Fertil, 2019, 25(12): 2133-2141. | |
[40] | 秦瑞劼, 张民, 刘之广, 等. 植物诱抗剂对尿素氮利用率和小麦产量的影响[J]. 水土保持学报, 2018, 32(4): 327-332, 345. |
Qin RJ, Zhang M, Liu ZG, et al. Effects of plant inducer on nitrogen use efficiency of urea and wheat yield[J]. J Soil Water Conserv, 2018, 32(4): 327-332, 345. | |
[41] | Chen Q, Li ZL, Qu ZM, et al. Maize yield and root morphological characteristics affected by controlled-release diammonium phosphate and Paecilomyces variotii extracts[J]. Field Crops Res, 2020, 255: 107862. |
[42] | 赵洪猛, 杨贵婷, 刘之广, 等. 聚氨酯包膜和喷涂诱抗剂提高滨海盐化潮土玉米产量和磷肥利用率的协同效应[J]. 植物营养与肥料学报, 2019, 25(12): 2189-2196. |
Zhao HM, Yang GT, Liu ZG, et al. Synergism of polyureathane coating and elicitor spraying to increase phosphorus efficiency and maize yield in coastal salinized flavo-aquic soil[J]. J Plant Nutr Fertil, 2019, 25(12): 2189-2196. | |
[43] | Wang XQ, Yao YY, Liu ZG, et al. Highly active biostimulant Paecilomyces variotii extracts reduced controlled-release urea application while maintaining rice yield[J]. J Sci Food Agric, 2022, 102(5): 1883-1893. |
[44] | Chen HZ, Wu QY, Zhang G, et al. Carbendazim-resistance of Gibberella zeae associated with fusarium head blight and its management in Jiangsu Province, China[J]. Crop Prot, 2019, 124: 104866. |
[45] | 宋益民, 丛国林, 陈怀谷. 多菌灵及其复配制剂防治小麦赤霉病的应用效果[J]. 植物保护学报, 2018, 45(2): 352-358. |
Song YM, Cong GL, Chen HG. Efficacy of carbendazim and its mixtures for controlling wheat scab[J]. J Plant Prot, 2018, 45(2): 352-358. |
[1] | YANG Jia-hong, LI Jing-yi, WU Jia-hao, HUANG You-mei, LIU Yan-fen, QIN Yuan, CAI Han-yang. Research Progress in the Auxin Signaling Pathway Involved in the Regulation of Female Gametophyte Development in Arabidopsis [J]. Biotechnology Bulletin, 2024, 40(7): 19-27. |
[2] | YANG Hong-yan, HAN Xiao, YANG Jian-jun. Scaling up Production of pDNA Plasmids in Disposable Bioreactors [J]. Biotechnology Bulletin, 2024, 40(1): 168-175. |
[3] | YU Yang, LIU Tian-hai, LIU Li-xu, TANG Jie, PENG Wei-hong, CHEN Yang, TAN Hao. Study on Aerosol Microbial Community in the Production Workshop of Morel Spawn [J]. Biotechnology Bulletin, 2023, 39(5): 267-275. |
[4] | KONG De-zhen, NIE Ying-bin, CUI Feng-juan, SANG Wei, XU Hong-jun, TIAN Xiao-ming. Research Status and Prospect of Hybrid Wheat Seed Production [J]. Biotechnology Bulletin, 2023, 39(1): 95-103. |
[5] | LIU Tian-hai, YANG Shu-qin, LIU Fu-peng, MIAO Ren-yun, YU Yang, WU Xiang, TANG Jie, WANG Yong, PENG Wei-hong, TAN Hao. Effects of Organic Fertilizers Fermented with Wheat Straw and Chicken Manure on the Continuous Cultivation of Morchella sextelata [J]. Biotechnology Bulletin, 2022, 38(12): 263-273. |
[6] | KONG De-zhen, NIE Ying-bin, XU Hong-jun, CUI Feng-juan, MU Pei-yuan, TIAN Xiao-ming. Effects of Blend Seeding on the Yield,Purity and Yield Advantage of F1 in Three-line Hybrid Wheat [J]. Biotechnology Bulletin, 2022, 38(10): 132-139. |
[7] | SHAN Qi, JIA Hui-shu, YAO Wen-bo, LIU Wei-can, LI Hai-yan. Research Progress in Biological Functions of miR396-GRF Module in Plants and Its Potential Application Values [J]. Biotechnology Bulletin, 2022, 38(10): 34-44. |
[8] | TANG Jia-cheng, LIANG Yi-min, MA Jia-si, PENG Gui-xiang, TAN Zhi-yuan. Diversity and Growth Promotion of Endophytic Bacteria Isolated from Passiflora edulia Sims [J]. Biotechnology Bulletin, 2022, 38(1): 86-97. |
[9] | LIAO Zhao-min, CAI Jun, LIN Jian-guo, DU Xin, WANG Chang-gao. Expression of Glucose Oxidase Gene from Aspergillus niger in Pichia pastoris and Optimization of Enzyme Production Conditions [J]. Biotechnology Bulletin, 2021, 37(6): 97-107. |
[10] | TAO Zhi-dong, HE Yan-hui, DENG Zi-he, SUN Lin-lin, WU Zhan-sheng. Screening of High-efficiency Cellulose-degrading Microorganism from Spent Lentinula edodes Substrate and Optimization of Its Enzyme Production [J]. Biotechnology Bulletin, 2021, 37(11): 158-165. |
[11] | GUO Mei-yan, LIU Bao-you, LI Yang, ZHANG Xiao-ying, CEHN Yu-guo, DING Xin-hua. Application Effect of a Novel Plant Immune Inducer ZNC in Tobacco [J]. Biotechnology Bulletin, 2021, 37(1): 182-188. |
[12] | CHEN Yi-dan, ZHANG Yu, YANG Jie, ZHANG Qin, JIANG Li. Exploration of Key Functional Genes Affecting Milk Production Traits in Dairy Cattle Based on RNA-seq [J]. Biotechnology Bulletin, 2020, 36(9): 244-252. |
[13] | WANG Jing-yu, WANG Meng, PAN Yang-yang, WANG Jing-lei, ZHANG Rui, MA Rui, HU Xue-quan, QIU Xiao-fei, CUI Yan, YU Si-jiu, XU Geng-quan. Molecular Characteristics of Bosgrunniens FAF1 Gene and Its Expression in Ovaries,Fallopian Tubes and Uterus at Different Stages [J]. Biotechnology Bulletin, 2020, 36(7): 80-89. |
[14] | WU Jia-jin, ZHU Sen-lin, ZHOU Mi, SUN Hui-zeng. Research Progress and Trends on Rumen Microbiota in Dairy Cows [J]. Biotechnology Bulletin, 2020, 36(2): 27-38. |
[15] | WU Yi, MA Hong-fei, CAO Yong-jia, SI Jing, CUI Bao-kai. Advances on Properties,Production,Purification and Immobilization of Fungal Laccase [J]. Biotechnology Bulletin, 2019, 35(9): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||