Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (3): 24-29.
• Reviews and Monographs • Previous Articles Next Articles
Wu Xue, Yuan Jinduo, Zhao Nannan, Yang Guiwen, An Liguo
Received:
2012-10-10
Revised:
2013-03-21
Online:
2013-03-20
Published:
2013-03-21
Wu Xue, Yuan Jinduo, Zhao Nannan, Yang Guiwen, An Liguo. Gene Silencing in Planarian[J]. Biotechnology Bulletin, 2013, 0(3): 24-29.
[1] Guo S, Kemphues KJ. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell, 1995, 81(4):611-620.
[2] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature, 1998, 391(6669):806-811. [3] 和琼姬, 燕飞, 陈剑平. RNA 干扰机制及其主要蛋白因子研究 进展[J]. 浙江农业学报, 2011, 23(2):415-420. [4] Alvarado AS, Newmark PA. Double-stranded RNA specifically disrupts gene expression during planarian regeneration[J]. Proc Natl Acad Sci USA, 1999, 96(9):5049-5054. [5] Reddien PW, Oviedo NJ, Jennings JR, et al . SMEDWI-2 is a PIWIlike protein that regulates planarian stem cells[J]. Science, 2005, 310(5752):1327-1330. [6] Chang CI, Kim HA, Dua P, et al. Structural diversity repertoire of gene silencing small interfering RNAs[J]. Nucleic Acid Therapeutics, 2011, 21(3):125-131. [7] 宋雪梅, 燕飞, 杜立新. RNA 沉默诱导复合物中的生物大分子 及其装配[J]. 遗传, 2006, 28(6):761-766. [8] 马丽, 张春庆. RNA 干扰机制及应用研究进展[J]. 北方园艺, 2012(10):191-193. [9] Newmark PA, Alvarado AS. Not your father’s planarian :A classic model enters the era of functional genomics[J]. Genetics, 2002, 3: 210-219. [10] Newmark PA, Reddien PW, Cebria F, et al. Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians[J]. Proc Natl Acad Sci USA, 2003, 100(1): 11861-11865. [11] Saló E, Abril JF, Adell T, et al. Planarian regeneration :achievements and future directions after 20 years of research[J]. International Journal of Developmental Biology, 2009, 53(8-10):1317- 1327. [12] Reddien PW, Bermange AL, Murfitt KJ, et al. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria[J]. Developmental Cell, 2005, 8(5):635-649. [13] Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications[J]. Trends Biotechnol, 2010, 28(11):570-579. [14] Shibata N, Rouhana L, Agata K. Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians[J]. Development, Growth & Differentiation, 2010, 52(1):27-41. [15] Palakodeti D, Smielewska M, Lu YC, et al. The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians[J]. RNA, 2008, 14(6): 1174-1186. [16] Salvetti A, Rossi L, Lena A, et al. DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance[J]. Development, 2005, 132(8):1863-1874. [17] Guo TX, Peters AH, Newmark PA. A Bruno-like gene is required for stem cell maintenancein planarians[J]. Developmental Cell, 2013年第3期29 吴雪等:涡虫的基因沉默作用 2006, 11(2):159-169. [18] Juliano CE, Swartz SZ, Wessel GM, et al. A conserved germline multipotency program[J]. Development, 2010, 137(24): 4113-4126. [19] Aboobaker AA. Planarian stem cells :a simple paradigm for regeneration [J]. Cell, 2011, 21(5):304-311. [20] Cebrià F, Newmark PA. Morphogenesis defects are associated with abnormal nervous system regeneration following roboA RNAi in planarians[J]. Development, 2007, 134 :833-837. [21] Lapan SW, Reddien PW. Transcriptome analysis of the planarian eye identifies ovo as a specific regulator of eye regeneration[J]. Cell Reports, 2012, 2(2):294-307. [22] Cebrià F, Kobayashi C, Nakazawa M, et al. FGFR-related gene noudarake restricts brain tissues to the head region of planarians[J]. Nature, 2002, 419(6970):620-624. [23] Kobayashi C, Saito Y, Ogawa K, et al. Wnt signaling is required for antero-posterior patterning of the planarian brain[J]. Developmental Biology, 2007, 306(2):714-724. [24] Iglesias M, Almuedo-Castillo M, Aboobaker AA, et al. Early planarian brain regeneration is independent of blastema polarity mediated by the Wnt/β-catenin pathway[J]. Developmental Biology, 2011, 358(1):68-78. [25] Okamura K, Hagen JW, Duan H, et al. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila[J]. Cell, 2007, 130(1):89-100. [26] 张超, 庞全海. siRNA 与miRNA 在生物体基因调控中沉默机 制的比较[J]. 中国生物化学与分子生物学报, 2012, 28(5): 393-398. [27] Ender C, Krek A, Beitzinger M, et al. A human snoRNA with micro- RNA-like functions[J]. Molecular Cell, 2008, 32(4):519- 528. [28] Newman MA, Thomson JM, Hammond SM. Lin-28 interaction with the let-7 precursor loop mediates regulated microRNA processing[J]. RNA, 2008, 14(8):1539-1549. [29] González-Estévez C, Arseni V, Thambyrajah RS. Diverse miRNA spatial expression patterns suggest important roles in homeostasis and regeneration in planarians[J]. International Journal of Developmental Biology, 2009, 53(4):493-505. [30] Rouhana L, Shibata N, Nishimura O, et al. Different requirements for conserved post-transcriptional regulators in planarian regeneration and stem cell maintenance[J]. Developmental Biology, 2010, 341(2):429-443. [31] Li YQ, Zeng A, Han XS, et al. Argonaute-2 regulates the proliferation of adult stem cells in planarian[J]. Cell Research, 2011, 21 (12):1750-1754. [32] Resch AM, Palakodeti D. Small RNA pathways in Schmidtea mediterranea[J]. International Journal of Developmental Biology, 2012, 56(1-3):67-74. [33] Lu YC, Smielewska M, Palakodeti D, et al. Deep sequencing identifies new and regulated microRNAs in Schmidtea mediterranea [J]. RNA, 2009, 15(8):1483-1491. [34] Friedlǎnder MR, Adamidi C, Han T, et al. High-resolution profiling and discovery of planarian small RNAs[J]. Proc Natl Acad Sci USA, 2009, 106(28):11546-11551. [35] Thatcher EJ, Patton JG. Small RNAs have a big impact on regeneration[J]. RNA Biology, 2010, 7(3):333-338. [36] Malone CD, Brennecke J, Dus M, et al. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary[J]. Cell, 2009, 137(3):522-535. [37] Saito K, Siomi MC. Small RNA-mediated quiescence of transposable elements in animals[J]. Developmental Cell, 2010, 19(5): 687-697. [38] Kibanov MV, Gvozdev VA, Olenina LV. Germ granules in spermatogenesis of Drosophila :Evidences of contribution to the piRNA silencing[J]. Communicative & Integrative Biology, 2012, 5(2): 130-133. [39] 张燕, 樊伯珍, 童晓文. piRNA 在生殖系统中的功能研究进 展[J]. 临床医学工程, 2010, 17(1):143-145. [40] VaginVV, SigovaA, Li C, et al. A distinct small RNA path way silences selfish genetic elements in the germline[J]. Science, 2006, 313(5785):320-324. [41] Brennecke J, Aravin AA, Stark A, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila [J]. Cell, 2007, 128(6):1089-1103. [42] Piao HL, Ma L. Non-coding RNAs as regulators of mammary development and breast cancer[J]. J Mammary Gland Biol Neoplasia, 2012, 17(1):33-42. |
[1] | LIU Zhen-yin, DUAN Zhi-zhen, PENG Ting, WANG Tong-xin, WANG Jian. Establishment and Optimization of Virus-induced Gene Silencing System in Bougainvillea peruviana ‘Thimma’ [J]. Biotechnology Bulletin, 2023, 39(7): 123-130. |
[2] | LI Wen-chen, LIU Xin, KANG Yue, LI Wei, QI Ze-zheng, YU Lu, WANG Fang. Optimization and Application of Tobacco Rattle Virus-induced Gene Silencing System in Soybean [J]. Biotechnology Bulletin, 2023, 39(7): 143-150. |
[3] | LI Xiu-qing, HU Zi-yao, LEI Jian-feng, DAI Pei-hong, LIU Chao, DENG Jia-hui, LIU Min, SUN Ling, LIU Xiao-dong, LI Yue. Cloning and Functional Analysis of Gene GhTIFY9 Related to Cotton Verticillium Wilt Resistance [J]. Biotechnology Bulletin, 2022, 38(8): 127-134. |
[4] | FU Si-tong, SI Wei-jia, LIU Ying, CHENG Tang-ren, WANG Jia, ZHANG Qi-xiang, PAN Hui-tang. Establishing Tobacco Rattle Virus-mediated Gene Silencing System for Primula forbesii [J]. Biotechnology Bulletin, 2022, 38(4): 295-302. |
[5] | LIU Xiao-mei, WANG Dong-xin, ZHANG Chun, WEI Shuang-shi. Inhibition of AAV-mediated RNAi to SARS-CoV-2 S Gene Expression [J]. Biotechnology Bulletin, 2022, 38(3): 188-193. |
[6] | GUO Yu-fei, YAN Rong-mei, ZHANG Xiao-ru, CAO Wei, LIU Hao. Metabolic Engineering Modification of Aspergillus niger for the Production of D-glucaric Acid [J]. Biotechnology Bulletin, 2022, 38(11): 227-237. |
[7] | GAO Peng-fei, XI Fei-hu, ZHANG Ze-yu, HU Kai-qiang, CHEN Kai, WEI Wen-tao, DING Jia-zhi, GU Lian-feng. Research Progress of Plant VIGS Technology and Its Application in Forestry Science [J]. Biotechnology Bulletin, 2021, 37(5): 141-153. |
[8] | PAN Yin-lai, QIU Chun-hui, WANG Yi-lei, ZHANG Zi-ping. Development of RNA Drugs and Its Application in Aquaculture [J]. Biotechnology Bulletin, 2021, 37(2): 203-215. |
[9] | DENG Pu-rong, LIU Yong-bo. Review on the Synergistic Insect-resistant Application of RNAi and Bt-transgenic Technologies [J]. Biotechnology Bulletin, 2021, 37(10): 216-224. |
[10] | XU Xue-liang, WANG Fen-shan, LIU Zi-rong, FAN Lin-juan, JI Xiang-yun, JIANG Jie-xian, YAO Ying-juan. Research Progress of RNA Interference Technology in the Field of Entomology [J]. Biotechnology Bulletin, 2021, 37(1): 255-261. |
[11] | SU Jie, GUO Rong-qi, GAO Yang, YU Xiu-min, LI Guo-jing, WANG Rui-gang. Response to NaCl and ABA in Arabidopsis thaliana of the Double Silent Gene VHA-c2&c4 [J]. Biotechnology Bulletin, 2020, 36(7): 48-54. |
[12] | SONG Hua-li, SUN Xiao-ying, KONG Xiang-hui, LI Li, PEI Chao. Application of RNA Interference Technology in Antiviral and Antiparasitic Research of Aquatic Animals [J]. Biotechnology Bulletin, 2020, 36(2): 193-205. |
[13] | HAN Cui-cui, LIU Li-kun, WANG Yu-chun, YANG Ying, LIU Ji-cheng, ZHOU Zhong-guang. Construction of TOX3 Gene Lentiviral RNA Interference Vector and Effect on Proliferation of Human Breast Cancer Cells ZR-75-1 [J]. Biotechnology Bulletin, 2019, 35(7): 141-147. |
[14] | WANG Jia-yue, LIU Xiang-nan, PENG Kang-li, ZHAO Bo. Construction and Identification of Lentiviral Vector for RNA Interference of USE1 Gene [J]. Biotechnology Bulletin, 2019, 35(3): 117-122. |
[15] | LEI Zhao-xia, LIU Jing, BAI Yi-ping, TANG Wei, WANG Hong-yang. Cloning and Functional Analysis of a Potato Ubiquitin-conjugating Enzyme Gene StUBC17 [J]. Biotechnology Bulletin, 2019, 35(1): 35-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||