Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (4): 166-174.doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.003
• Review • Previous Articles Next Articles
Lü Binna Liang Wenxing
Received:
2015-01-12
Online:
2015-04-22
Published:
2015-04-22
Lü Binna, Liang Wenxing. The Research Progress of Protein Acetylation[J]. Biotechnology Bulletin, 2015, 31(4): 166-174.
[1] Zhang K, Tian S, Fan E. Protein lysine acetylation analysis:current MS-based proteomic technologies[J]. Analyst, 2013, 138(6):1628-1636. [2] Hu J, Guo Y, Li Y. Research progress in protein post-translational modification[J]. Chin Sci Bull, 2006, 51(6):633-645. [3] Averbeck NB, Durante M. Protein acetylation within the cellular response to radiation[J]. J Cell Physiol, 2011, 226(4):962-967. [4] Bernal V, Castano-Cerezo S, Gallego-Jara J, et al. Regulation of bacterial physiology by lysine acetylation of proteins[J]. N Biotechnol, 2014, 31(6):586-595. [5] Xie L, Li W, Xie J. Prokaryotic Nepsilon-lysine acetylomes and implications for new antibiotics[J]. J Cell Biochem, 2012, 113 (12):3601-3609. [6] Hu LI, Lima BP, Wolfe AJ. Bacterial protein acetylation:the dawning of a new age[J]. Mol Microbiol, 2010, 77(1):15-21. [7] Schuetze KB, McKinsey TA, Long CS. Targeting cardiac fibroblasts to treat fibrosis of the heart:Focus on HDACs[J]. Journal of Molecular & Cellular Cardiology, 2014, 70:100-107. [8] Tao S, Escalante-Semerena JC. Control of protein function by reversible Nε-lysine acetylation in bacteria[J]. Current Opinion in Microbiology, 2011, 14:200-204. [9] Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis[J]. Proc Natl Acad Sci USA, 1964, 51:786-794. [10] Jones JD, O’Connor CD. Protein acetylation in prokaryotes[J]. Proteomics, 2011, 11(15):3012-3022. [11] Zhang J, Sprung R, Pei J, et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli[J]. Mol Cell Proteomics, 2009, 8:215-225. [12] Kouzarides T. Histone acetylases and deacetylases in cell proliferation[J]. Current Opinion In Genetics & Development, 1999, 9(1):40-48. [13] Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions[J]. Science, 2009, 325(5942):834-840. [14] Glozak MA, Sengupta N, Zhang X, et al. Acetylation and deacetylation of non-histone proteins[J]. Gene, 2005, 363:15-23. [15] Richard HG, Sarah S. CBP/p300 in cell growth, transformation, and development[J]. Genes & Development, 2000, 14:1553-1577. [16] Liang W, Deutscher MP. Transfer-messenger RNA-SmpB protein regulates ribonuclease R turnover by promoting binding of HslUV and Lon proteases[J]. J Biol Chem, 2012, 287(40):33472-33479. [17] Liang W, Malhotra A, Deutscher MP. Acetylation regulates the stability of a bacterial protein:growth stage-dependent modifica-tion of RNase R[J]. Mol Cell, 2011, 44(1):160-166. [18] Liang W, Deutscher MP. Post-translational modification of RNase R is regulated by stress-dependent reduction in the acetylating enzyme Pka(YfiQ)[J]. RNA, 2012, 18(1):37-41. [19] Vladimirov N, Sourjik V. Chemotaxis:how bacteria use memory [J]. Biol Chem, 2009, 390(11):1097-1104. [20] Michael E. A hitchhiker's guide through advances and conceptual changes in chemotaxis[J]. J Cell Physiol, 2007, 213:574-580. [21] Li R, Gu J, Chen YY, et al. CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY[J]. Mol Microbiol, 2010, 76(5):1162-1174. [22] Liarzi O, Barak R, Bronner V, et al. Acetylation represses the binding of CheY to its target proteins[J]. Mol Microbiol, 2010, 76(4):932-943. [23] Barak R, Eisenbach M. Co-regulation of acetylation and phosphory-lation of CheY, a response regulator in chemotaxis of Escherichia coli[J]. J Mol Biol, 2004, 342(2):375-381. [24] Xu W, Li Y, Liu C, et al. Protein lysine acetylation guards metabolic homeostasis to fight against cancer[J]. Oncogene, 2014, 33(18):2279-2285. [25] Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by protein lysine acetylation[J]. Science, 2010, 327(5968):1000-1004. [26] Wang Q, Zhang Y, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux[J]. Science, 2010, 327(5968):1004-1007. [27] Huang W, Wang Z, Lei QY. Acetylation control of metabolic enzymes in cancer:an updated version[J]. Acta Biochimica Et Biophysica Sinica, 2014, 46(3):204-213. [28] Lima BP, Antelmann H, Gronau K, et al. Involvement of protein acetylation in glucose-induced transcription of a stress-responsive promoter[J]. Mol Microbiol, 2011, 81:1190-1204. [29] Ma Q, Wood TK. Protein acetylation in prokaryotes increases stress resistance[J]. Biochem Biophys Res Commun, 2011, 410(4):846-851. [30] Jones JD, O’Connor CD. Protein acetylation in prokaryotes[J]. Proteomics, 2011, 11(15):3012-3022. [31] Hodawadekar SC, Marmorstein R. Chemistry of acetyl transfer by histone mod-ifying enzymes:structure, mechanism and implications for effector design[J]. Oncogene, 2007, 26:5528-5540. [32] Crosby HA, Heiniger EK, Harwood CS, et al. Reversible N epsilon-lysine acetylation regulates the activity of acyl-CoA synthetases involved in anaerobic benzoate catabolism in Rhodopseudomonas palustris[J]. Mol Microbiol, 2010, 76(4):874-888. [33] Li R, Gu J, Chen P, et al. Purification and characterization of the acetyl-CoA synthetase from Mycobacterium tuberculosis[J]. Acta Biochim Biophys Sin(Shanghai), 2011, 43(11):891-899. [34] Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey[J]. Mol Cell, 2006, 23(4):607-618. [35] Olsen JV, Blagoev B, Gnad F, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks[J]. Cell, 2006, 127(3):635-648. [36] Mann M. Functional and quantitative proteomics using SILAC[J]. Nat Rev Mol Cell Biol, 2006, 7(12):952-958. [37] Mischerikow N, Heck AAR. Targeted large-scale analysis of protein acetylation[J]. Proteomics, 2011, 11:571-589. [38] Schwer B, Eckersdorff M, Li Y, et al. Calorie restriction alters mitochondrial protein acetylation[J]. Aging Cell, 2009, 8(5):604-606. [39] Mertins P, Qiao JW, Patel J, et al. Integrated proteomic analysis of post-translational modifications by serial enrichment[J]. Nat Methods, 2013, 10(7):634-637. [40] Lu ZK, Cheng ZY, Zhao YM, et al. Bioinformatic analysis and post-translational modification crosstalk prediction of lysine acetylation[J]. PLoS One, 2011, 6(12):e28228. [41] Thao S, Chen CS, Zhu H, et al. N-epsilon-lysine acetylation of a bacterial transcription factor inhibits its DNA-binding activity[J]. PLoS One, 2010, 5(12):e15123. [42] Zhang QF, Gu J, Gong P, et al. Reversibly acetylated lysine residues play important roles in the enzymatic activity of Escherichia coli N-hydroxyarylamine O-acetyltransferase[J]. FEBS J, 2013, 280(9):1966-1979. [43] Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by protein lysine acetylation[J]. Science, 2010, 327:1000-1004. [44] Dominy JE, Gerhart-Hines Z, Puigserver P. Nutrient-dependent acetylation controls basic regulatory metabolic switches and cellular reprogramming[J]. Cold Spring Harb Symp Quant Biol, 2011, 76:203-209. [45] Jiang WQ, Wang SW, Zhao SM, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase[J]. Molecular Cell, 2011, 43(1):33-44. [46] Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4:44-57. [47] Tan J, Cang S, Ma Y, et al. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents[J]. J Hematol Oncol, 2010, 3:5. [48] Lagouge M, Argmann C, Gerhart-Hines Z. Resveratrolimproves mitochondrial function and protects againstmetabolic disease by activating SIRT1 and PGC-1α[J]. Cell, 2006, 127:1109-1122. [49] Anderson KA, Hirschey MD. Mitochondrial protein acetylation regulates metabolism[J]. Essays Biochem, 2012, 52:23-35. [50] Schrump DS. Cytotoxicity mediated by histone deacetylase inhibitors in cancer cells:echanisms and potential clinical implications[J]. Clin Cancer Res, 2009, 5(12):3947-3957. [51] Starai VJ, Celic I, Cole RN, et al. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine[J]. Science, 2002, 298:2390-2392. [52] Mund C, Lyko F. Epigenetic cancer therapy:Proof of concept and remaining challenges[J]. Bioessays, 2010, 32(11):949-957. [53] Drapier JC, Hibbs JB. HJ. Murine cytotoxic activated macrophages inhibit aconi-tase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible[J]. J Clin Invest 1986, 78:790-797. [54] Mehnert JM, Kelly WK. Histone deacetylase inhibitors:biology and mechanism of action[J]. Cancer J, 2007, 13(1):23-29. [55] Giudice FS, Pinto DJ, Nor JE, et al. Inhibition of histone deacetylase impacts cancer stem cells and induces epithelial-mesenchyme transition of head and neck cancer[J]. PLoS One, 2013, 8(3):e58672. [56] Sun DF, Zhang YJ, Tian XQ, et al. Inhibition of m TOR signalling potentiates the effects of trichostatin A in human gastric cancer cell lines by promoting histone acetylation[J]. Cell Biology International, 2014, 38(1):50-63. [57] Bertrand P. Inside HDAC with HDAC inhibitors[J]. Eur J Med Chem, 2010, 45:2095-2116. [58] Chan V, Fenning A, Iyer A, et al. Resveratrol improves cardiovasc-ular function in DOCA-salt hypertensive rats[J]. Curr Pharm Biotechnol, 2011, 12:429-436. [59] Ocker M. Deacetylase inhibitors-focus on non-histone targets and effects[J]. World J Biol Chem, 2010, 1(5):55-61. [60] Ito K, Charron CE, Adcock IM. Impact of protein acetylation in inflammatory lung diseases[J]. Phamacal Ther, 2007, 116:249-265. [61] Petruccelli LA, Dupéré-Ri, Cher D, Pettersson F, et al. Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells[J]. PLoS One, 2011, 6(6):e20987. [62] Chen Z, Ye X, Tang N, et al. The histone acetylranseferase h MOF acetylates Nrf2 and regulates anti-drug responses in human non-small cell lung cancer[J]. British Journal of Pharmacology, 2014, 171(13):3196-3211. [63] Peng C, Lu Z, Xie Z, et al. The first identification of lysine malonylation substrates and its regulatory enzyme[J]. Mol Cell Proteomics, 2011, 10(12):M111. 012658. [64] Weinert BT, Sch?lz C, Wagner SA, et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation[J]. Cell Rep, 2013, 4 (4):842-851. [65] Hou T, Zheng G, Zhang P, et al. LAceP:lysine acetylation site prediction using logistic regression classifiers[J]. PLoS One, 2014, 9(2):1-7. [66] Gille S, Pauly M. O-acetylation of plant cell wall polysaccharides [J]. Frontiers in Plant Science, 2012, 3(12):1-7. |
[1] | ZHENG Huan, LIN Dong-mei, LIU Jun-yuan, ZHANG Yin-lian, LIN Biao-sheng, LIN Zhan-xi, LI Jing. Analysis of Amino Acid Metabolism Difference Between Fruiting Body and Mycelium of Taiwanofungus camphoratus by LC-QTOF-MS Metabonomics [J]. Biotechnology Bulletin, 2023, 39(5): 254-266. |
[2] | YAO Jin-dong, TANG Hua-mei, YANG Wen-xiao, ZHANG Li-shan, LIN Xiang-min. Comparative Proteomics Analysis of Aeromonas hydrophila Under Enrofloxacin Stress [J]. Biotechnology Bulletin, 2023, 39(4): 288-296. |
[3] | CUI Ji-jie, CAI Wen-bo, ZHUANG Qing-hui, GAO Ai-ping, HUANG Jian-feng, CHEN Ya-hui, SONG Zhi-zhong. Biological Function of Gene MiISU1 for Fe-S Cluster Assembly in Mangifera indica [J]. Biotechnology Bulletin, 2023, 39(2): 139-146. |
[4] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
[5] | WEI Xin-xin, LAN Hai-yan. Advances in the Regulation of Plant MYB Transcription Factors in Secondary Metabolism and Stress Response [J]. Biotechnology Bulletin, 2022, 38(8): 12-23. |
[6] | ZHOU Xue-min, KANG Li-juan, GUO Yong-ni, YANG Xiao-han, JIANG Yi-long, WANG Ze-long, SUN Qian, KANG bo. Expressions of Genes Related to Polyamine Metabolism and Muscle Development in Muscle Tissues of Duck at Different Ages [J]. Biotechnology Bulletin, 2022, 38(8): 244-251. |
[7] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. pOsHAK1:OsFLN2 Expression Enhances the Drought Tolerance by Altering Sugar Metabolism in Rice [J]. Biotechnology Bulletin, 2022, 38(8): 92-100. |
[8] | WANG Zheng-yan, HU Hai-sheng, YONG Han-zi, LU Yu-jie. Nutritional Interactions Between Symbiotic Microbiota and Insect Hosts [J]. Biotechnology Bulletin, 2022, 38(7): 99-108. |
[9] | CHEN Hu, YANG Zhang-qi, SUN Shuang, LI Peng, XU Hui-lan. Expressions and of Genes Response to Signal Substances in MAPK Cascade Pathway Genes in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(6): 187-197. |
[10] | GAO Xue-yan, CHEN Lin-xu, CHEN Xian-ke, PANG Xin, PAN Deng, LIN Jian-qun. Application of Acidithiobacillus spp. in Industry and Agriculture [J]. Biotechnology Bulletin, 2022, 38(5): 36-46. |
[11] | YAN Jiong, FENG Chen-yi, GAO Xue-kun, XU Xiang, YANG Jia-min, CHEN Zhao-yang. Construction of Homozygous Plin1-knockout Mouse Model and Phenotype Analysis Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2022, 38(3): 173-180. |
[12] | SUN Man-luan, GE Sai, BU Jia, ZHU Zhuang-yan. Regulation Mechanism of Ribonucleases in Escherichia coli [J]. Biotechnology Bulletin, 2022, 38(3): 234-245. |
[13] | LI Yi-dan, SHAN Xiao-hui. Gibberellin Metabolism Regulation and Green Revolution [J]. Biotechnology Bulletin, 2022, 38(2): 195-204. |
[14] | NIU Hong-yu, SHU Qian, YANG Hai-jun, YAN Zhi-yong, TAN Ju. Isolation, Identification, Degradation Characteristics and Metabolic Pathway of an Efficient Sodium Dodecyl Sulfate-degrading Bacterium [J]. Biotechnology Bulletin, 2022, 38(12): 287-299. |
[15] | CAI Guo-lei, LU Xiao-kai, LOU Shui-zhu, YANG Hai-ying, DU Gang. Classification and Identification of Bacillus LM Based on Whole Genome and Study on Its Antibacterial Principle [J]. Biotechnology Bulletin, 2021, 37(8): 176-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||