[1] Zasloff M. Antimicrobial peptides of multicellular organisms[J] . Nature, 2002, 415:389-395. [2] Cole JN, Nizet V. Bacterial evasion of host antimicrobial peptide defenses[J] . Microbiol Spectrum, 2016, 4. doi:10. 1128/microbiolspec. VMBF-0006-2015. [3] Tam JP, Wang S, Wong KH, et al. Antimicrobial peptides from plants[J] . Pharmaceuticals, 2015, 8:711-757. [4] Segev-Zarko L, Saar-Dover R, Brumfeld V, et al. Mechanisms of biofilm inhibition and degradation by antimicrobial peptides[J] . Biochem J, 2015, 468:259-270. [5] de Melo ET, Estrela AB, Santos ECG, et al. Structural characterization of a novel peptide with antimicrobial activity from the venom gland of the scorpion Tityus stigmurus:Stigmurin[J] . Peptides, 2015, 68:3-10. [6] Ramírez-Carreto S, Jiménez-Vargas JM, Rivas-Santiago B, et al. Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity[J] . Peptides, 2015, 73:51-59. [7] Bard GCV, Nascimento VV, Ribeiro SFF, et al. Characterization of peptides from Capsicum annuum hybrid seeds with inhibitory activity against α-Amylase, serine proteinases and fungi[J] . Protein J, 2015, 34:122-129. [8] Hellinger R, Koehbach J, Puigpinós A, et al. Inhibition of human prolyl oligopeptidase activity by the cyclotide psysol 2 isolated from psychotria solitudinum[J] . J Nat Prod, 2015, 78:1073-1082. [9] Kang SJ, Park SJ, Mishig-Ochir T, et al. Antimicrobial peptides:therapeutic potentials[J] . Expert Rev Anti Infe, 2014, 12:1477-1486. [10] Fjell CD, Hiss JA, Hancock REW, et al. Designing antimicrobial peptides:form follows function[J] . Nat Rev Drug Discov, 2012, 11:37-51. [11] Pearson CS, Kloos Z, Murray B, et al. Combined bioinformatic and rational design approach to develop antimicrobial peptides against Mycobacterium tuberculosis[J] . Antimicrob Agents Chemother, 2016. 60(5):2757-2764. [12] Wang G, Li X, Wang Z. APD3:the antimicrobial peptide database as a tool for research and education[J] . Nucleic Acids Res, 2016, 44(D1):D1087-1093. [13] Fjell CD, Hancock REW, Cherkasov A. AMPer:a database and an automated discovery tool for antimicrobial peptides[J] . Bioinformatics, 2007, 23:1148-1155. [14] Waghu FH, Barai RS, Gurung P, et al. CAMPR3:a database on sequences, structures and signatures of antimicrobial peptides[J] . Nucleic Acids Res. 2015:gkv1051. [15] Louis-Jeune C, Andrade-Navarro MA, Perez-Iratxeta C. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra[J] . Proteins, 2012, 80:374-381. [16] Regberg J, Vasconcelos L, Madani F, et al. pH-responsive PepFect cell-penetrating peptides[J] . Int J Pharm, 2016, 501:32-38. [17] Kelley LA, Mezulis S, Yates CM, et al. The Phyre2 web portal for protein modeling, prediction and analysis[J] . Nat Protoc, 2015, 10:845-858. [18] Rei?er S, Strandberg E, Steinbrecher T, et al. 3D hydrophobic moment vectors as a tool to characterize the surface polarity of amphiphilic peptides[J] . Biophys J, 2014, 106:2385-2394. [19] Rice P, Longden I, Bleasby A. EMBOSS:the European molecular biology open software suite[J] . Trends Genet, 2000, 16:276-277. [20] Gautier R, Douguet D, Antonny B, et al. HELIQUEST:a web server to screen sequences with specific α-helical properties[J] . Bioinformatics, 2008, 24:2101-2102. [21] Lear S, Cobb SL. Pep-Calc. com:a set of web utilities for the calculation of peptide and peptoid properties and automatic mass spectral peak assignment[J] . J Comput Aid Mol Des, 2016, 30:271-277. [22] Wang Z, Wang G. APD:the antimicrobial peptide database[J] . Nucleic Acids Res, 2004, 32:D590-D592. [23] Lata S, Sharma BK, Raghava GPS. Analysis and prediction of antibacterial peptides[J] . BMC Bioinformatics, 2007, 8:263. doi:10. 1186/1471-2105-8-263. [24] Lata S, Mishra NK, Raghava GPS. AntiBP2:improved version of antibacterial peptide prediction[J] . BMC Bioinformatics, 2010, 11:S19. doi:10. 1186/1471-2105-11-S1-S19. [25] Nagarajan V, Kaushik N, Murali B, et al. A Fourier Transformation based method to mine peptide space for antimicrobial activity[J] . BMC Bioinformatics, 2006, 7:S2. doi:10. 1186/1471-2105-7-S2-S2. [26] Cherkasov A, Hilpert K, Jenssen H, et al. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs[J] . ACS Chem Biol, 2008, 4:65-74. [27] Juretic D, Vukicevic D, Ilic N, et al. Computational design of highly selective antimicrobial peptides[J] . J Chem Inf Model, 2009, 49:2873-2882. [28] Yount NY, Yeaman MR. Multidimensional signatures in antimicrobial peptides[J] . Proc Natl Acad Sci USA, 2004, 101(19):7363-7368. [29] Schutte BC, Mitros JP, Bartlett JA, et al. Discovery of five conserved β-defensin gene clusters using a computational search strategy[J] . Proc Natl Acad Sci USA, 2002, 99:2129-2133. [30] Wachinger M, Kleinschmidt A, Winder D, et al. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression[J] . J Gen Virol, 1998, 79:731-740. [31] Lehrer RI. Multispecific myeloid defensins[J] . Curr Opin Hematol, 2007, 14:16-21. [32] Ireland DC, Wang CKL, Wilson JA, et al. Cyclotides as natural anti-HIV agents[J] . Pept Sci, 2008, 90:51-60. [33] Férir G, Petrova MI, Andrei G, et al. The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications[J] . PLoS One, 2013, 8:e64010. [34] Wang G, Watson KM, Peterkofsky A, et al. Identification of novel human immunodeficiency virus type 1-inhibitory peptides based on the antimicrobial peptide database[J] . Antimicrob Agents Ch, 2010, 54:1343-1346. [35] Wang G, Watson KM, Buckheit RW. Anti-human immunodeficiency virus type 1 activities of antimicrobial peptides derived from human and bovine cathelicidins[J] . Antimicrob Agents Chemother, 2008, 52:3438-3440. [36] Li X, Li Y, Han H, et al. Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region[J] . J Am Chem Soc, 2006, 128:5776-5785. [37] Torrent M, Nogués VM, Boix E. A theoretical approach to spot active regions in antimicrobial proteins[J] . BMC Bioinformatics, 2009, 10:373. doi:10. 1186/1471-2105-10-373. [38] Merrifield RB, Juvvadi P, Andreu D, et al. Retro and retroenantio analogs of cecropin-melittin hybrids[J] . P Natl Acad Sci USA, 1995, 92:3449-3453. [39] Li X, Li Y, Peterkofsky A, et al. NMR studies of aurein 1. 2 analogs[J] . BBA-Biomembranes, 2006, 1758:1203-1214. [40] Villain M, Jackson PL, Manion MK, et al. De novo design of peptides targeted to the EF hands of calmodulin[J] . J Biol Chem, 2000, 275:2676-2685. [41] Blondelle SE, Houghten RA. Design of model amphipathic peptides having potent antimicrobial activities[J] . Biochemistry, 1992, 31:12688-12694. [42] Kang SJ, Won HS, Choi WS, et al. De novo generation of antimicrobial LK peptides with a single tryptophan at the critical amphipathic interface[J] . J Pept Sci, 2009, 15:583-588. [43] Wang G, Li X, Wang Z. APD2:the updated antimicrobial peptide database and its application in peptide design[J] . Nucleic Acids Res, 2009, 37:D933-D937. [44] Monroc S, Badosa E, Feliu L, et al. De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria[J] . Peptides, 2006, 27:2567-2574. [45] Duval E, Zatylny C, Laurencin M, et al. KKKKPLFGLFFGLF:a cationic peptide designed to exert antibacterial activity[J] . Peptides, 2009, 30:1608-1612.
|