Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (8): 41-46.doi: 10.13560/j.cnki.biotech.bull.1985.2016.08.008
• Orignal Article • Previous Articles Next Articles
ZHANG Hong-yan1, XIN Ji-ge1, 2
Revised:
2015-05-31
Online:
2016-08-25
Published:
2016-08-25
ZHANG Hong-yan, XIN Ji-ge. Research Progress on the Technology of Pig Somatic Cell Nuclear Transfer[J]. Biotechnology Bulletin, 2016, 32(8): 41-46.
[1] Polejaeva IA, Chen SH, Vaught TD, et al. Cloned pigs produced by nuclear transfer from adult somatic cells[J]. Nature, 2000, 407(6800):86-90. [2] Lai L, Park KW, Cheong HT, et al. Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells[J]. Mol Reprod Dev, 2002, 62(3):300-306. [3] Lai L, Tao T, Machaty Z, et al. Feasibility of producing porcine nuclear transfer embryos by using G2/M-stage fetal fibroblasts as donors[J]. Biol Reprod, 2001, 65(5):1558-1564. [4] Park KW, Cheong HT, Lai L, et al. Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein[J]. Anim Biotechnol, 2001, 12(2):173-181. [5] Prather RS, Sims MM, First NL. Nuclear transplantation in early pig embryos[J]. Biol Reprod, 1989, 41(3):414-418. [6] Li GP, Tan JH, Sun QY, et al. Cloned piglets born after nuclear transplantation of embryonic blastomeres into porcine oocytes matured in vivo[J]. Cloning, 2000, 2(1):45-52. [7] Onishi A, Iwamoto M, Akita T, et al. Pig cloning by microinjection of fetal fibroblast nuclei[J]. Science, 2000, 289(5482):1188-1190. [8] Betthauser J, Forsberg E, Augenstein M, et al. Production of cloned pigs from in vitro systems[J]. Nat Biotechnol, 2000, 18(10):1055-1059. [9] Bondioli K, Ramsoondar J, Williams B, et al. Cloned pigs generated from cultured skin fibroblasts derived from a H-transferase transgenic boar[J]. Mol Reprod Dev, 2001, 60(2):189-195. [10] Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557):1089-1092. [11] Walker SC, Shin T, Zaunbrecher GM, et al. A highly efficient method for porcine cloning by nuclear transfer using in vitro-matured oocytes[J]. Cloning Stem Cells, 2002, 4(2):105-112. [12] 叶雷, 李红, 魏红江, 等. 成年版纳微型猪近交系克隆猪的制备[J]. 畜牧兽医学报, 2012, 43(9):1491-1498. [13] Wei H, Qing Y, Pan W, et al. Comparison of the efficiency of Banna miniature inbred pig somatic cell nuclear transfer among different donor cells[J]. PLoS One, 2013, 8(2):e57728. [14] 潘登科, 张运海, 孙秀柱, 等. 低氧培养早期胚胎克隆小型猪(Sus scrofa)[J]. 科学通报, 2006(4):415-419. [15] 卢晟盛, 吕培茹, 刘红波, 等. 广西巴马小型猪克隆胚的构建及胚胎移植[J]. 动物学杂志, 2008(6):147-153. [16] 刘忠华, 田江天, 重郑, 等. 体细胞核移植克隆民猪:培养液对卵母细胞成熟及胚胎发育的影响[J]. 中国科学C辑:生命科学, 2007, 37(6):634-640. [17] 刘忠华, 宋军, 王振坤, 等. 体细胞核移植生产绿色荧光蛋白转基因猪[J]. 科学通报, 2008, 53(5):556-560. [18] 王飞, 冯冲, 龙川, 等. 利用体细胞LOH突变制备α1, 3-半乳糖基转移酶基因(GGTA1)缺失的五指山小型猪[J]. 畜牧兽医学报, 2013, 44(4):522-527. [19] Wakayama T, Yanagimachi R. Mouse cloning with nucleus donor cells of different age and type[J]. Mol Reprod Dev, 2001, 58(4):376-383. [20] Kato Y, Tani T, Tsunoda Y. Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows[J]. J Reprod Fertil, 2000, 120(2):231-237. [21] Nagashima H, Fujimura T, Takahagi Y, et al. Development of efficient strategies for the production of genetically modified pigs[J]. Theriogenology, 2003, 59(1):95-106. [22] Kou Z, Kang L, Yuan Y, et al. Mice cloned from induced pluripotent stem cells(iPSCs)[J]. Biol Reprod, 2010, 83(2):238-243. [23] Zhou S, Ding C, Zhao X, et al. Successful generation of cloned mice using nuclear transfer from induced pluripotent stem cells[J]. Cell Res, 2010, 20(7):850-853. [24] Fan N, Chen J, Shang Z, et al. Piglets cloned from induced pluripotent stem cells[J]. Cell Res, 2013, 23(1):162-166. [25] Lee GS, Hyun SH, Kim HS, et al. Improvement of a porcine somatic cell nuclear transfer technique by optimizing donor cell and recipient oocyte preparations[J]. Theriogenology, 2003, 59(9):1949-1957. [26] Schoevers EJ, Bevers MM, Roelen BA, et al. Nuclear and cytoplasmic maturation of sow oocytes are not synchronized by specific meiotic inhibition with roscovitine during in vitromaturation[J]. Theriogenology, 2005, 63(4):1111-1130. [27] Swain JE, Bormann CL, Krisher RL. Development and viability of in vitro derived porcine blastocysts cultured in NCSU23 and G1. 2/G2. 2 sequential medium[J]. Theriogenology, 2001, 56(3):459-469. [28] Rath D, Niemann H, Torres CR. In vitro development to blastocysts of early porcine embryos produced in vivo or in vitro[J]. Theriogenology, 1995, 43(5):913-926. [29] Wei HX, Zhang K, Ma YF, et al. Stage-dependent effect of leptin on development of porcine embryos derived from parthenogenetic activation and transgenic somatic cell nuclear transfer[J]. J Reprod Dev, 2009, 55(2):99-104. [30] Tao T, Machaty Z, Boquest AC, et al. Development of pig embryos reconstructed by microinjection of cultured fetal fibroblast cells into in vitro matured oocytes[J]. Anim Reprod Sci, 1999, 56(2):133-141. [31] Miyoshi K, Taguchi Y, Sendai Y, et al. Establishment of a porcine cell line from in vitro-produced blastocysts and transfer of the cells into enucleated oocytes[J]. Biol Reprod, 2000, 62(6):1640-1646. [32] Kuhholzer B, Hawley RJ, Lai L, et al. Clonal lines of transgenic fibroblast cells derived from the same fetus result in different development when used for nuclear transfer in pigs[J]. Biol Reprod, 2001, 64(6):1695-1698. [33] 潘伟荣, 魏太云, 信吉阁, 等. 电激活参数和培养基对猪卵母细胞孤雌发育的影响[J]. 湖南农业大学学报:自然科学版, 2011, 37(4):415-418. [34] Zhang TY, Dai JJ, Wu CF, et al. Positive effects of treatment of donor cells with aphidicolin on the preimplantation development of somatic cell nuclear transfer embryos in Chinese Bama mini-pig(Sus scrofa)[J]. Anim Sci J, 2012, 83(2):103-110. [35] Vajta G, Zhang Y, Machaty Z. Somatic cell nuclear transfer in pigs:recent achievements and future possibilities[J]. Reprod Fertil Dev, 2007, 19(2):403-423. [36] Zhang Y, Li J, Villemoes K, et al. An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer[J]. Cloning Stem Cells, 2007, 9(3):357-363. [37] Zhao J, Ross JW, Hao Y, et al. Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer[J]. Biol Reprod, 2009, 81(3):525-530. [38] Hammer RE, Pursel VG, Rexroad CE, Jr. , et al. Production of transgenic rabbits, sheep and pigs by microinjection[J]. Nature, 1985, 315(6021):680-683. [39] Rogers CS, Stoltz DA, Meyerholz DK, et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs[J]. Science, 2008, 321(5897):1837-1841. [40] Huang L, Fan N, Cai J, et al. Establishment of a porcine Oct-4 promoter-driven EGFP reporter system for monitoring pluripotency of porcine stem cells[J]. Cell Reprogram, 2011, 13(2):93-98. [41] Yang D, Yang H, Li W, et al. Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning[J]. Cell Res, 2011, 21(6):979-982. [42] CarlsonDF, Tana WF, Lillicod SG, et al. Efficient TALEN-mediated gene knockout in livestock[J]. Proc Natl Acad Sci USA, 2012, 109(43):17382-17387. [43] Zhou X, Xin J, Fan N, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer[J]. Cell Mol Life Sci, 2015, 72(6):1175-1184. [44] Yan Q, Yang H, Yang D, et al. Production of transgenic pigs over-expressing the antiviral gene Mx1[J]. Cell Regeneration, 2014, 3(1):11. [45] 李紫聪, 黄晓灵, 刘德武, 等. 转基因动物生物反应器研究进展[J]. 广东畜牧兽医科技, 2013, 38(4):1-5. [46] Prather RS, Hawley RJ, Carter DB, et al. Transgenic swine for biomedicine and agriculture[J]. Theriogenology, 2003, 59(1):115-123. [47] Yang YG, Sykes M. Xenotransplantation:current status and a perspective on the future[J]. Nat Rev Immunol, 2007, 7(7):519-531. [48] Matsunari H, Nagashima H. Application of genetically modified and cloned pigs in translational research[J]. J Reprod Dev, 2009, 55(3):225-230. |
[1] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[2] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[3] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[4] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[5] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[6] | XIE Wei, LIU Chun-ming. Commercialization of Biological Breeding in China: Opportunities and Policy Issues [J]. Biotechnology Bulletin, 2023, 39(1): 16-20. |
[7] | LI Dong-yang, XIAO Bing, WANG Chen-yao, YANG Xian-ming, LIANG Jin-gang, WU Kong-ming. Spatio-temporal Expression of Cry1Ab/Cry2Aj Insecticidal Protein in Genetically Modified Maize Ruifeng 125 with Stacked Insect and Herbicide Resistance Traits [J]. Biotechnology Bulletin, 2023, 39(1): 31-39. |
[8] | WANG Song, JIAN Xiao-ping, PAN Wan-shu, ZHANG Yong-guang, WANG Tao, YOU Ling. Effects of Fermented Corn Xiaoqu Distiller's Grains Feed on the Intestinal Microbiota of Growing-Finishing Pigs [J]. Biotechnology Bulletin, 2022, 38(9): 248-257. |
[9] | LIN Ying, YANG Wen-li, ZHOU Ling-yan, JIANG Da-gang. Research Progress in Agricultural Genetically Modified Nucleic Acid Reference Materials [J]. Biotechnology Bulletin, 2022, 38(8): 52-59. |
[10] | XUE Man-de, ZHAO Feng-yue, LI Jie, JIANG Dan-hua. Advances in Histone Variants in Plant Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 1-12. |
[11] | LI Bai, CAI Zhi-jun, WANG Lei, CHEN Jie, CAO Kui-rong, LI Jun, CHONG Gao-jun. Development and Application of the Combinatorial Marker for the Rice Blast Resistance Gene Pigm [J]. Biotechnology Bulletin, 2022, 38(7): 153-159. |
[12] | ZHANG Miao, YANG Lu-lu, JIA Yan-long, WANG Tian-yun. Research Progress in the Roles of DNA and Histone Methylations in Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 23-30. |
[13] | WANG Ting, YANG Yang, LI Jin-ping, DU Kun. Research Progress in the Effects of Genetically Modified Crops on Soil Microbial Community [J]. Biotechnology Bulletin, 2021, 37(9): 255-265. |
[14] | PAN Zhi-wen, CHEN Wei-ting, GAO Jie-er, ZHOU Feng, YAO Juan, WANG Sheng-bin, JIANG Da-gang. Genomic DNA Rapid Preparation and PCR Detection Methods for Genetically Modified Papaya [J]. Biotechnology Bulletin, 2021, 37(6): 286-294. |
[15] | QIU Xiao-yu, LIU Zuo-hua, QI Ren-li. Differences in Early Fat Development and Gene Transcription Expression in the Adipose Tissues of Piglets with and Without Gut Microbiota [J]. Biotechnology Bulletin, 2021, 37(5): 56-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||