Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (1): 12-23.doi: 10.13560/j.cnki.biotech.bull.1985.2017.01.002
• Orignal Article • Previous Articles Next Articles
YANG Ju, DENG Yu
Received:
2016-10-29
Online:
2017-01-25
Published:
2017-01-19
YANG Ju, DENG Yu. Key Technologies and Applications of Synthetic Biology[J]. Biotechnology Bulletin, 2017, 33(1): 12-23.
[1] Jackson D, Symons RH, Berg P, et al. Biochemical method for inserting new genetic information into DNA of Simian Virus 40:circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1972, 69(10):2904-2909. [2] Cohen SN, Chang AC, Boyer HW, et al. Construction of biologically functional bacterial plasmids in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(11):3240-3244. [3] Fuchs C, Rosenvold EC, Honigman A, et al. A simple method for identifying the palindromic sequences recognized by restriction endonucleases:the nucleotide sequence of the AvaII site[J]. Gene, 1978, 4(1):1-23. [4] Hobom B. Gene surgery:on the threshold of synthetic biology[J]. Med Klin, 1980, 75(24):834-841. [5] Gibson DG, Young L, Chuang RY, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5):343-345. [6] Shetty RP, Endy D, Knight TF. Engineering BioBrick vectors from BioBrick parts[J]. Journal of Biological Engineering, 2008, 2(1):5. [7] Knight T. Idempotent vector design for standard assembly of biobricks[J]. MIT Artificial Intelligence Laboratory;MIT Synthetic Biology Working Group, 2003. [8] Moon TS, Yoon S, Lanza AM, et al. Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli[J]. Applied and Environmental Microbiology, 2009, 75(3):589-595. [9] Yim H, Haselbeck R, Niu W, et al. Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol[J]. Nature Chemical Biology, 2011, 7(7):445-452. [10] Martin CH, Dhamankar H, Tseng HC, et al. A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-y-butyrolactone[J]. Nature Communications, 2013, 4:1414. [11] Paddon CJ, Keasling JD. Semi-synthetic artemisinin:a model for the use of synthetic biology in pharmaceutical development[J]. Nature Reviews Microbiology, 2014, 12(5):355-367. [12] Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446):528-532. [13] Cho A, Yun H, Park JH, et al. Prediction of novel synthetic pathways for the production of desired chemicals[J]. BMC Systems Biology, 2010, 4:35. [14] Zhang F, Carothers JM, Keasling JD. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids[J]. Nature Biotechnology, 2012, 30(4):354-359. [15] 谢科, 饶力群, 李红伟, 等. 基因组编辑技术在植物中的研究进展与应用前景[J]. 中国生物工程杂志, 2013, 33(6):99-104. [16] Kim SC, Skowron PM, Szybalski W, et al. Structural requirements forFokI-DNA interaction and oligodeoxyribonucleoti 319de-instructed cleavage[J]. Journal of Molecular Biology, 1996, 258(4):638-649. [17] 程曦, 王文义, 邱金龙. 基因组编辑:植物生物技术的机遇与挑战[J]. 生物技术通报, 2015, 31(4):25-33. [18] Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes:zinc finger fusions to Fok I cleavage domain[J]. Proc Natl Acad Sci USA, 1996, 93(3):1156-1160. [19] Smith J, Bibikova M, Whitby FG, et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains[J]. Nucleic Acids Res, 2000, 28(17):3361-3369. [20] Bibikova M, Carroll D, Segal DJ, et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases[J]. Mol Cell Biol, 2001, 21(1):289-297. [21] Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959):1501. [22] Garneau JE, Dupuis M, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 2010, 468(7320):67-71. [23] Jansen R, Embden JD, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol Microbiol, 2002, 43(6):1565-1575. [24] Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea:versatile small RNAs for adaptive defense and regulation[J]. Annual Review of Genetics, 2011, 45:273297. [25] Gasiunas G, Siksnys V. RNA-dependent DNA endonuclease Cas9 of the CRISPR system:Holy Grail of genome editing?[J]. Trends in Microbiology, 2013, 21(11):562-567. [26] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [27] Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nature Protocols, 2013, 8(11):2281-2308. [28] Jiang W, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature Biotechnology, 2013, 31(3):233-239. [29] Yu Z, Ren M, Wang Z, et al. Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila[J]. Genetics, 2013, 195(1):289-291. [30] Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2):442-451. [31] Isaacs FJ, Carr PA, Wang HH, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement[J]. Science, 2011, 333(6040):348-353. [32] Wang HH, Isaacs FJ, Carr PA, et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460(7257):894-898. [33] Quintin MJ, Ma NJ, Ahmed S, et al. Merlin:Computer-aided oligonucleotide design for large scale genome engineering with MAGE[J]. Acs Synthetic Biology, 2016, 5(6):452-458. [34] Zhang YH, Evans BR, Mielenz JR, et al. High-yield hydrogen production from starch and water by a synthetic enzymatic pathway[J]. PLos One, 2007, 2(5):1-6. [35] Sonderegger M, Schümperli M, Sauer U. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2004, 70(5):2892-2897. [36] Trinh CT, Unrean P, Srienc F. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses[J]. Appl Environ Microbiol, 2008, 74(12):3634-3643. [37] Hanai T, Atsumi S, Liao JC. Engineered synthetic pathway for isopropanol production in Escherichia coli[J]. Appl Environ Microbiol, 2007, 73(24):7814-7818. [38] Atsumi S, Cann AF, Connor MR, et al. Metabolic engineering of Escherichia coli for 1-butanol production[J]. Metab Eng, 2008, 10(6):305-311. [39] Steen EJ, Kang Y, Bokinsky G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass[J]. Nature, 2010, 463(7280):559-562. [40] Peralta-Yahya PP, Ouellet M, Chan R, et al. Identification and microbial production of a terpene-based advanced biofuel[J]. Nat Commun, 2011, 2:483. [41] Deng Y, Fong SS. Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol[J]. Metabolic Engineering, 2011, 13(5):570-577. [42] Van Duuren J, Brehmer B, Mars AE, et al. A limited LCA of bio-adipic acid:Manufacturing the nylon‐6, 6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks[J]. Biotechnology and Bioengineering, 2011, 108(6):1298-1306. [43] Sato K, Aoki M, Noyori R. A” green” route to adipic acid:Direct oxidation of cyclohexenes with 30 percent hydrogen peroxide[J]. Science, 1998, 281(5383):1646-1647. [44] Picataggio S, Beardslee T. Biological methods for preparing adipic acid:U. S. Patent 8, 241, 879[P]. 2012-8-14. [45] Noack H, Georgiev V, Blomberg MRA, et al. Theoretical insights into heme-catalyzed oxidation of cyclohexane to adipic acid[J]. Inorganic Chemistry, 2011, 50(4):1194-1202. [46] Li X, Wu D, Lu T, et al. Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration[J]. Angewandte Chemie International Edition, 2014, 53(16):4200-4204. [47] Niu W, Draths KM, Frost JW. Benzene-free synthesis of adipic acid[J]. Biotechnology Progress, 2002, 18(2):201-211. [48] Jung YK, Kim TY, Park SJ, et al. Metabolic engineering of Escheri- chia coli for the production of polylactic acid and its copolymers [J]. Biotechnol Bioeng, 2010, 105(1):161-171. [49] Yang TH, Kim TW, Kang HO, et al. Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase[J]. Biotechnol Bioeng, 2010, 105(1):150-160. [50] Celińska E. Debottlenecking the 1, 3-propanediol pathway by metabolic engineering[J]. Biotechnol Adv, 2010, 28(4):519-530. [51] Deng Y, Mao Y, Zhang XJ. Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass[J]. Biotechnology Progress, 2016, 32(1):14-20. [52] Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086):940-943. [53] Hale V, Keasling JD, Renninger N, et al. Microbially derived artemisinin:A biotechnology solution to the global problem of access to affordable antimalarial drugs[J]. Am J Trop Med Hyg, 2007, 77:198-202. [54] Engels B, Dahm P, Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol(Paclitaxel)production[J]. Metab Eng, 2008, 10(3-4):201-206. [55] Galanie S, Thodey K, Trenchard IJ, et al. Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349:1095-1100 . [56] Thodey K, Galanie S, Smolke CD. A microbial biomanufacturing platform for natural and semisynthetic opioids[J]. Nat Chem Biol, 2014, 10:837-844. [57] Anderson JC, Clarke EJ, Arkin AP, et al. Environmentally controlled invasion of cancer cells by engineered bacteria[J]. Journal of Molecular Biology, 2006, 355(4):619-627. [58] Weber W, Schoenmakers R, Keller B, et al. A synthetic mammalian gene circuit reveals antituberculosis compounds[J]. Proceedings of the National Academy of Sciences, 2008, 105(29):9994-9998. [59] Kemmer C, Gitzinger M, Daoud-El Baba M, et al. Self-sufficient control of urate homeostasis in mice by a synthetic circuit[J]. Nature Biotechnology, 2010, 28(4):355-360. [60] De Las Heras A, Carreño CA, De Lorenzo V. Stable implantation of orthogonal sensor circuits in Gram-negative bacteria for environmental release[J]. Environmental Microbiology, 2008, 10(12):3305-3316. |
[1] | LI Xue-qi, ZHANG Su-jie, YU Man, HUANG Jin-guang, ZHOU Huan-bin. Establishment of CRISPR/CasX-based Genome Editing Technology in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 40-48. |
[2] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[3] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[4] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[5] | ZHOU Xiao-jie, YANG Si-qi, ZHANG Yi-wen, XU Jia-qi, YANG Sheng. CRISPR-associated Transposases and Their Applications in Bacterial Genome Editing [J]. Biotechnology Bulletin, 2023, 39(4): 49-58. |
[6] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[7] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[8] | ZHOU Lin, LIANG Xuan-ming, ZHAO Lei. Biosynthesis of Natural Carotenoids:Progress and Perspective [J]. Biotechnology Bulletin, 2022, 38(7): 119-127. |
[9] | GUO Xiao-zhen, ZHANG Xue-fu. Analysis of the Development Trend in the Field of Plant Synthetic Biology [J]. Biotechnology Bulletin, 2022, 38(2): 289-296. |
[10] | ZHAO Yu-xue, WANG Yun, YU Lu-yao, LIU Jing-jing, SI Jin-ping, ZHANG Xin-feng, ZHANG Lei. Structure and Application of C-glycosyltransferases in Plants [J]. Biotechnology Bulletin, 2022, 38(10): 18-28. |
[11] | YE Min, GAO Jiao-qi, ZHOU Yong-jin. Engineering Non-conventional Yeast Cell Factory for the Biosynthesis of Natural Products [J]. Biotechnology Bulletin, 2021, 37(8): 12-24. |
[12] | ZHANG Chan, YAO Guang-long, ZHANG Jun-feng, YU Jing, YANG Dong-mei, CHEN Ping, WU You-gen. Research Progress on Patchoulol Molecular Regulation and Synthetic Biology in Pogostemon cablin [J]. Biotechnology Bulletin, 2021, 37(8): 55-64. |
[13] | LIU Xiao-tian, QIU Hao, TIAN Li, REN Ang, ZHAO Ming-wen. Research Progress in CRISPR/Cas9 Genome Editing System in Edible and Medicinal Fungi [J]. Biotechnology Bulletin, 2021, 37(11): 4-13. |
[14] | YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang. Dynamic Control:An Efficient Strategy for Metabolically Engineering Microbial Cell Factories [J]. Biotechnology Bulletin, 2020, 36(6): 1-12. |
[15] | CHANG Han-wen, ZHENG Xin-ling, LUO Jian-mei, WANG Min, SHEN Yan-bing. Tolerance Elements and Their Application Progress on the Construction of Highly-efficient Microbial Cell Factory [J]. Biotechnology Bulletin, 2020, 36(6): 13-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||