[1] Yan JB, Warburton M, Crouch J. Association mapping for enhancing maize(Zea mays L. )genetic improvement[J]. Crop Science, 2011, 51(2):433-449. [2] Zhang X, Zhang H, Li LJ, et al. Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers[J]. BMC Genomics, 2016, 17(1):697. [3] Jannink J, Bink MC, Jansen RC. Using complex plant pedigrees to map valuable genes[J]. Trends in Plant Science, 2001, 6(8):337-342. [4] Zondervan KT, Cardon LR. The complex interplay among factors that influence allelic association[J]. Nature Reviews Genetics, 2004, 5(2):89-100. [5] 李玮瑜, 张斌, 张嘉楠, 等 . 利用关联分析发掘小麦自然群体旗叶叶绿素含量的优异等位变异[J]. 作物学报, 2012, 38(6):962-970. [6] 刘贞琦, 刘振业, 马达鹏, 等 . 水稻叶绿素含量及其与光合速率关系的研究[J]. 作物学报, 1984, 10(1):57-62. [7] 左宝玉, 李世仪, 匡廷云, 等 . 玉米不同层次叶片叶绿体的超微结构和叶绿素含量变化[J]. 作物学报, 1987, 13(3):213-218. [8] Masuda T, Fujita YC. Regulation and evolution of chlorophyll metabolism[J]. Photochemical & Photobiological Sciences, 2008, 7(7):1131-1149. [9] Peng SB, Gurdevs K, Parminder V, et al. Progress in ideotype breeding to increase rice yield potential[J]. Field Crops Research, 2008, 108(1):32-38. [10] Wang F, Wang G, Li X, et al. Heredity, physiology and mapping of a chlorophyll content gene of rice(Oryza sativa L. )[J]. Journal of Plant Physiology, 2008, 165(3):324-330. [11] Huang JL, Qin F, Zang GC, et al. Mutation of OsDET1 increases chlorophyll content in rice[J]. Plant Science, 2013, 210:241-249. [12] Huang JY, Wang YF, Yang JS. Over-expression of OsPSK3 increases chlorophyll content of leaves in rice[J]. Hereditas, 2010, 32(12):1281-1289. [13] Wang QX, Xie WB, Xing HK, et al. Genetic architecture of natural variation in rice chlorophyll content revealed by a genome-wide association study[J]. Molecular Plant, 2015, 8(6):946-957. [14] Zhu X, Chen J, Xie Z, et al. Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes[J]. Plant Journal, 2015, 84(3):597-610. [15] Yang JD, Worley E, Udvardi M. A NAP-AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves[J]. Plant Cell, 2014, 26(12):4862-4874. [16] Gao S, Gao J, Zhu X, et al. ABF2, ABF3 and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis[J]. Molecular Plant, 2016, 9(9):1272-1285. [17] Sakuraba Y, Park SY, Kim YS, et al. Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence[J]. Molecular Plant, 2014, 7(8):1288-1302. [18] Zhang LG, Kusaba M, Tanaka A, et al. Protection of chloroplast membranes by VIPP1 rescues aberrant seedling development in Arabidopsis nyc1 mutant[J]. Frontiers in Plant Science, 2016, 7(73):533. [19] Ma QH, Liu YC. Expression of isopentenyl transferase gene(ipt)in leaf and stem delayed leaf senescence without affecting root growth[J]. Plant Cell Reports, 2009, 28(11):1759-1765. [20] Chang C, Lu J, Zhang HP, et al. Copy number variation of cytokinin oxidase gene Tackx4 associated with grain weight and chlorophyll content of flag leaf in common wheat[J]. PLoS One, 2015, 10 (12):e0145790. [21] Gitelson AA, Peng Y. Efficiency of chlorophyll in gross primary productivity:A proof of concept and application in crops[J]. Journal of Plant Physiology, 2016, 201:101-110. [22] Wagle P, Zhang Y, Jin C, et al. Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize[J]. Ecological Applications, 2016, 26(4):1211-1222. [23] Bradbury PJ, Zhang Z, Kroon DE, et al. TASSEL:Software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23:2633-2635. [24] Kasmati AR, Töpel M, Khan NZ, et al. Evolutionary, molecular and genetic analyses of Tic22 homologues in Arabidopsis thaliana chloroplasts[J]. PLoS One, 2013, 8(5):e63863. [25] Rudolf M, Machettira AB, Groβ LE, et al. In vivo function of Tic22, a protein import component of the intermembrane space of chloroplasts[J]. Molecular Plant, 2013, 6(3):817-829. [26] Singh S, Singh A, Nandi AK. The rice OsSAG12-2 gene codes for a functional protease that negatively regulates stress-induced cell death[J]. Journal of Biosciences, 2016, 41(3):1-9. [27] Otegui MS, Yoo-Sun N, Martínez DE, et al. Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean[J]. Plant Journal, 2005, 41(6):831-844. |