[1] 林雨鑫, 张菁菁, 戴国俊, 等. 京海黄鸡杂交配套系亲本对柔嫩艾美耳球虫的敏感性[J]. 中国兽医学报, 2015, 35(7):1074-1078. [2] 钱根林, 李健, 樊彦红, 等. 鸡球虫疫苗研究进展[J]. 上海畜牧兽医通讯, 2013(2):28-29. [3] 王诗琴, 辛世杰, 王晓慧, 等. IL-6基因启动子区单核苷酸多态对京海黄鸡柔嫩艾美尔球虫抗性指标的影响[J]. 扬州大学学报:农业与生命科学版, 2018, 39(1):36-41. [4] Cong F, Liu X L, Han Z, et al.Transcriptome analysis of chicken kidney tissues following coronavirus infectious bronchitis virus infection[J]. BMC Genomics, 2013, 14:743-756. [5] Chen T, Huang B, Zhao Q, et al.Molecular characterization and functional analysis of Eimeria tenella malate dehydrogenase[J]. Parasitology Research, 2018, 117(1):1-11. [6] Guo A, Cai J, Gong W, et al.Transcriptome analysis in chicken cecal epithelia upon infection by Eimeria tenella in vivo[J]. PLoS One, 2013, 8(5):e64236. [7] Xu Y, Yang H, Zhang L, et al.High-throughput sequencing technology to reveal the composition and function of cecal microbiota in Dagu chicken[J]. BMC Microbiology, 2016, 16(1):259. [8] Zhou X, Jiang X, Yang C, et al.Cecal microbiota of Tibetan Chickens from five geographic regions were determined by 16S rRNA sequencing[J]. Microbiologyopen, 2016, 5(5):753-762. [9] 戴国俊, 孙明明, 张菁菁, 等. 鸡柔嫩艾美尔球虫病抗性主成分分析评估模型的建立[J]. 畜牧兽医学报, 2015, 46(3):467-475. [10] Langmead B, Salzberg SL.Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9(4):357-359. [11] Trapnell C, Pachter L, Salzberg SL.TopHat:discovering splice junctions with RNA-Seq[J]. Bioinformatics, 2009, 25(9):1105-1111. [12] Anders S, Pyl PT, Huber W.HTSeq-a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2):166-169. [13] Love MI, Simon A, Vladislav K, et al.RNA-Seq workflow:gene-level exploratory analysis and differential expression[J]. F1000Res, 2015, 4:1070. [14] Benjamini Y, Hochberg Y.Controlling the false discovery rate:a practical and powerful approach to multiple testing[J]. J Royal Statistical Soc Series B, 1995, 57:289-300. [15] Young MD, Wakefield MJ, Smyth GK, et al.Gene ontology analysis for RNA-seq:accounting for selection bias[J]. Genome Biol, 2010, 11(2):R14. [16] Mao X, Cai T, Olyarchuk JG, et al.Automated genome annotation and pathway identification using the KEGG Orthology(KO)as a controlled vocabulary[J]. Bioinformatics, 2005, 21(19):3787-3793. [17] Yue H, Lei XW, Yang FL, et al.Reference gene selection for normalization of PCR analysis in chicken embryo fibroblast infected with H5N1 AIV[J]. Virol Sin, 2010, 25(6):425-431. [18] Liu Z, Ji T, Yin L, et al.Transcriptome sequencing analysis reveals the regulation of the hypopharyngeal glands in the Honey Bee, Apis mellifera carnica Pollmann[J]. PLoS One, 2013, 8(12):e81001. [19] 王静. 鞘脂与PPAR相互作用及其对癌细胞凋亡调控的影响[D]. 北京:中国农业大学, 2004. [20] Daynes RA, Jones DC.Emerging roles of ppars in inflammation and immunity[J]. Nature Reviews Immunology, 2002, 2(10):748-759. [21] Gou Q, Gong X, Jin L, et al.Peroxisome proliferator-activated receptors(PPARs)are potential drug targets for cancer therapy[J]. Oncotarget, 2017, 8(36):60704-60709. [22] Zhu P, Goh YY, Chin HFA, et al.Angiopoietin-like 4:a decade of research[J]. Biosci Rep, 2012, 32(3):211-219. [23] Shafik NM, Mohamed DA, Bedder AE, et al.Significance of tissue expression and serum levels of angiopoietin-like protein 4 in breast cancer progression:link to NF-κB /P65 activity and pro-Inflammatory cytokines[J]. Asian Pac J Cancer Prev, 2015, 16(18):8579-8587. [24] Bouleti C, Mathivet T, Coqueran B, et al.Protective effects of angiopoietin-like 4 on cerebrovascular and functional damages in ischaemic stroke[J]. European Heart Journal, 2013, 34(47):3657-3668. [25] Georgiadi A, Wang Y, Stienstra R, et al.Overexpression of angiopoietin-like protein 4 protects against atherosclerosis development[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33(7):1529-1537. [26] Klaus C, Kaemmerer E, Reinartz A, et al.TP53 status regulates ACSL5-induced expression of mitochondrial mortalin in enterocytes and colorectal adenocarcinomas[J]. Cell & Tissue Research, 2014, 357(1):267-278. [27] Catalá-Rabasa A, Dorothy N, Mario SJ, et al.High ACSL5 transcript levels associate with systemic lupus erythematosus and apoptosis in jurkat T lymphocytes and peripheral blood cells[J]. PLoS One, 2011, 6(12):e28591. [28] 张冠华, 智发朝. 黏着斑的结构、功能及在肿瘤转移中作用[J]. 现代消化及介入诊疗, 2015(2):174-177. [29] Gay CG, Pastoret PP, Pinard-van DL. Animal genomics for animal health preface[J]. Developments in Biologicals, 2008, 132(4):13. [30] 牛虹, 周浩本, 刘怀民, 等. 微小RNA-507靶向调控VEGFC表达及对肝癌细胞生物学行为和PI3K/Akt通路的影响[J]. 临床肿瘤学杂志, 2018, 23(8):673-679. [31] Chaudary N, Milosevic M, Hill RP.Suppression of vascular endothelial growth factor receptor 3(VEGFR3)and vascular endothelial growth factor C(VEGFC)inhibits hypoxia-induced lymph node metastases in cervix cancer[J]. Gynecologic Oncology, 2011, 123(2):393-400. [32] Küchler AM, Gjini E, Peterson-Maduro J, et al.Development of the zebrafish lymphatic system requires vegfc signaling[J]. Current Biology, 2006, 16(12):1244-1248. [33] 汤丽平. 候选抑癌基因MAPK10在原发性肝细胞肝癌中表达的表观遗传学调控机制及临床意义研究[D]. 重庆:重庆医科大学, 2012. [34] Ying J, Li H, Cui Y, et al.Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter[J]. Leukemia, 2006, 20(6):1173-1175. [35] Lee HJ, Jang M, Kim H, et al.Comparative transcriptome analysis of adipose tissues reveals that ECM-receptor interaction is involved in the depot-specific adipogenesis in cattle[J]. PLoS One, 2013, 8(6):e66267. [36] Zhang H, Ye J, Weng X, et al.Comparative transcriptome analysis reveals that the extracellular matrix receptor interaction contributes to the venous metastases of hepatocellular carcinoma[J]. Cancer Genetics, 2015, 208(10):482-491. [37] Ponta H, Sherman L, Herrlich PA.CD44:from adhesion molecules to signaling regulators[J]. Nat Rev Mol Cell Biol, 2003, 4:33-45. [38] DeGrendele HC, Estess P, Siegelman MH, et al. Requirement for CD44 in activated T cell extravasation into an inflammatory site[J]. Science, 1997, 278(5338):672-675. [39] Protin U, Schweighoffer T, Jochum W, et al.CD44-deficient mice develop normally with changes in subpopulations and recirculation of lymphocyte subsets[J]. Journal of Immunology, 1999, 163(9):4917-4923. |