[1] Ingo D, Nobuyuki U.Potassium channels in plant cells[J]. Febs Journal, 2011, 278(22):4293-4303.
[2] Amtmann A, Troufflard S, Armengaud P .The effect of potassium nutrition on pest and disease resistance in plants[J]. Physiologia Plantarum, 2008, 133(4):682-691.
[3] Wyn Jones RG, Pollard A.Proteins, enzymes and inorganic ions[M]// Lauchli A, Pirson A. Encyclopedia of Plant Physiology. Berlin:Springer, 1983:528-526.
[4] Schroeder J I, Ward J M, Gassmann W.Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants:biophysical implications for K+ uptake[J]. Annu Rev Biophys Biomol Struct, 1994, 23(1):441-471.
[5] Schroeder JI, Hedrich R, Fernandez J M.Potassium-selective single channels in guard cell protoplasts of Vicia faba[J]. Nat, 1984, 312(5992):361-362.
[6] Dennison KL, Robertson WR, et al.Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis[J]. Plant Physiol, 2001, 127(3):1012-1019.
[7] 闵水珠. 植物钾离子通道的分子生物学研究进展[J]. 浙江农业学报, 2005, 17(3):163-169.
[8] 吴平, 印莉萍, 张立平, 等. 植物营养分子生理学[M]. 北京:科学出版社, 2001, 163-211
[9] 程钰宏, 赵瑞雪, 董宽虎. 植物钾(K+)离子通道的研究[J]. 山西农业科学, 2008, 36(2):3-7.
[10] Fan LM, Zhao Z, Assmann S, et al.Guard cells:a dynamic signa-ling model[J]. Curr Opin Plant Biol, 2004, 7(5):537-546.
[11] Tripti Sharma IDJR.The role of K+ channels in uptake and redistr-ibution of potassium in the model plant Arabidopsis thaliana[J]. Front Plant Sci, 2013, 4(2):224-224.
[12] Gambale F, Uozumi N.Properties of shaker-type potassium channels in higher plants[J]. J Membr Biol, 2006, 210(1):1-19.
[13] Czempinski K, Zimmermann S, Ehrhardt T, et al.New structure and function in plant K+ channels:KCO1, an outward rectifier with a steep Ca2+ dependency[J]. EMBO J, 1997, 16(10):2565-2575.
[14] Czempinski K, Zimmermann S, Muller-Rober BN.Molecular mechanisms and regulation of plant ion channels[J]. J Exp Bot, 1999, 50(Special):955-966.
[15] Marcel D, Müller T, Hedrich R, et al.K+ transport characteristics of the plasma membrane tandem-pore channel TPK4 and pore chimeras with its vacuolar homologs[J]. Febs Letters, 2010, 584(11):2433-2439.
[16] Voelker C, Gomez-Porras JL, Becker D, et al.Roles of tandem-pore K+, channels in plants - a puzzle still to be solved[J]. Plant Biology, 2010, 12(s1):56-63.
[17] Sentenac H, Bonneaud N, Minet M, et al.Cloning and expression in yeast of a plant potassium ion transport system[J]. Science, 1992, 256(5057):663-665.
[18] Nieves-Cordones M, Chavanieu A, et al.Distinct amino acids in the C-linker domain of the Arabidopsis K+ channel KAT2 determine its subcellular localization and activity at the plasma membrane[J]. Plant Physiol, 2014, 164(3):1415-1429.
[19] Nieves-Cordones M, Gaillard I.Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels:Comparison with animal HCN and Kv channels[J]. Plant Signaling & Behavior, 2014, 9(10):e972892.
[20] Xu J, Li HD, Chen LQ, et al.A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis[J]. Cell, 2006, 125(7):1347-1360.
[21] Benito B, Haro R, Amtmann A, et al.The twins K+ and Na+ in plants[J]. J Plant Physiol, 2014, 171(9):723-731.
[22] Gambale F, Uozumi N.Properties of Shaker-type potassium channels in higher plants[J]. J Membr Biol, 2006, 210(1):1-19
[23] 李娟. 水稻钾离子通道OsAKT1及其调控因子参与水稻钾吸收的实验证据[D]. 北京:中国农业大学, 2014.
[24] Ardie SW, Liu SK, Takano T.Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis[J]. Plant Cell Rep, 2010, 29(8):865-874.
[25] Spalding EP, Hirsch RE, Lewis DR, et al.Potassium uptake supporting plant growth in the absence of AKT1 channel activity[J]. J Gen Physiol, 1999, 113(6):909-918.
[26] Hirsch RE, Sussman MR.A role for the AKT1 potassium channel in plant nutrition[J]. Science, 1998, 280(5365):918-921.
[27] Ache P, Becker D, Deeken R, et al.VFK1, a Vicia faba K+ channel involved in phloem unloading[J]. Plant J, 2015, 27(6):571-580.
[28] Adams E, Miyazaki T, Shin R.Contribution of KUPs to potassium and cesium accumulation appears complementary in Arabidopsis[J]. Plant Signaling & Behavior, 2018:1-3.
[29] Adams E, Miyazaki T, et al.Cesium inhibits plant growth primarily through reduction of potassium influx and accumulation in Arabidopsis[J]. Plant Cell Physiol, 2018, 60(1):63-76.
[30] Rodrígueznavarro A, Rubio F.High-affinity potassium and sodium transport systems in plants[J]. J Exp Bot, 2006, 57(5):1149-1160.
[31] Wu GQ, Feng RJ, et al.Sodium chloride stimulates growth and alleviates sorbitol-induced osmotic stress in sugar beet seedlings[J]. Plant Growth Regulation, 2015, 75(1):307-316.
[32] Ahmad I, Mian A, Maathuis FJM.Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance[J]. J Exp Bot, 2016, 67(9):2689-2698.
[33] Nieves-Cordones M, Caballero F, Martínez V, et al.Disruption of the Arabidopsis thaliana inward-rectifier K+ channel AKT1 improves plant responses to water stress[J]. Plant & Cell Physiology, 2012, 53(2):423-432.
[34] Flowers TJ.Improving crop salt tolerance[J]. J Exp Bot, 2004, 55(396):307-319.
[35] Zhang JL, Shi H.Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research, 2013, 115(1):1-22.
[36] Assaha DVM, Akihiro U, Hirofumi S, et al.The role of Na+ and K+ transporters in salt stress adaptation in glycophytes[J]. Frontiers in Physiology, 2017, 8:509-509.
[37] Nievescordones M, Miller AJ, Alemán F, et al.A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5[J]. Plant Molecular Biology, 2008, 68(6):521-532
[38] D Golldack, F Quigley, CB Michalowski, et al. Salinity stress-tolerant and -sensitive rice(Oryza sativa L.)regulate AKT1-type potassium channel transcripts differently[J]. Plant Molecular Biology, 2003, 51(1):71-81.
[39] Wang N, Qiao W, Liu X, et al.Relative contribution of Na+/K+ homeostasis, photochemical efficiency and antioxidant defense system to differential salt tolerance in cotton(Gossypium hirsutum L.)cultivars[J]. Plant Physiol Biochem, 2017, 119:121-131.
[40] Duan HR, Ma Q, Zhang JL, et al.The inward-rectifying K+, channel SsAKT1 is a candidate involved in K+, uptake in the halophyte Suaeda salsa, under saline condition[J]. Plant and Soil, 2015, 395(1-2):173-187.
[41] Ardie SW, Liu S, Takano T.Expression of the AKT1-type K(+)channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis[J]. Plant Cell Rep, 2010, 29(8):865-874.
[42] Harrewijn P.Potassium and plant health[J]. European Journal of Plant Pathology, 1979, 85(2):82-82.
[43] Li J, Long Y, Qi G N, et al.The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex[J]. Plant Cell, 2014, 26(8):3387-3402.
[44] Shi X, Long Y, He F, et al.The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel[J]. PLoS Pathogens, 2018, 14(1):e1006878.
[45] 刘晓燕, 何萍, 金继运. 钾在植物抗病性中的作用及机理的研究进展[J]. 植物营养与肥料学报, 2006, 12(3):445-450.
[46] Lozovaya VV, Lygin AV, Li S, et al.Biochemical response of soybean roots to, Fusarium solani, f. sp. glycines, Infection[J]. Crop Science, 2004, 44(3):819-826.
[47] 龙雨. 水稻钾离子通道OsAKT1生理功能及其调控机制的电生理学研究[D]. 北京:中国农业大学, 2014.
[48] Mühlhäuser WW, Hörner M, Weber W, et al.Light-regulated protein kinases based on the CRY2-CIB1 system[J]. Methods in Molecular Biology, 2017, 1596:257-270.
[49] Nagae M, Nozawa A, Koizumi N, et al.The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana[J]. J Biol Chem, 2003, 278(43):42240-42246.
[50] Gu Z, Ma B, Jiang Y, et al.Expression analysis of the calcineurin B-like gene family in rice(Oryza sativa L.)under environmental stresses[J]. Gene, 2008, 415(1-2):1-12.
[51] Kolukisaoglu U, Weinl S, et al.Calcium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J]. Plant Physiol, 2004, 134(1):43-58.
[52] Hashimoto K, Eckert C, Anschütz U, et al.Phosphorylation of calcineurin B-like(CBL)calcium sensor proteins by their CBL-interacting protein kinases(CIPKs)is required for full activity of CBL-CIPK complexes toward their target proteins[J]. J Biol Chem, 2012, 287(11):7956-7968.
[53] Cuéllar T, Pascaud F, Verdeil J, et al.A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions[J]. Plant J, 2010, 61(1):58-69.
[54] Cuéllar T, Azeem F, et al.Potassium transport in developing fleshy fruits:the grapevine inward K+ channel VvK1. 2 is activated by CIPK-CBL complexes and induced in ripening berry flesh cells[J]. Plant J, 2013, 73(6):1006-1018.
[55] Geiger D, Becker D, Vosloh D, et al.Heteromeric AtKC1·AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions[J]. J Biol Chem, 2009, 284(32):21288-21295.
[56] Ren X, Qi G, Feng H, et al.CalcineurinB-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis[J]. Plant J, 2013, 74(2):258-266.
[57] Lee SC, Lan WZ, Kim BG, et al.A protein phosphorylation/dephosphorylation network regulates a plant potassium channel[J]. Proc Natl Acad Sci USA, 2007, 104(40):15959-15964.
[58] Lan WZ, Lee SC, Che YF, et al.Mechanistic analysis of AKT1 regulation by the CBL-CIPK-PP2CA interactions[J]. Molecular Plant, 2011, 4(3):527-536.
[59] Salinas M, Duprat F, Heurteaux C, et al.New modulatory α subunits for mammalian shark K+ channels[J]. J Biol Chem, 1997, 272(39):24371-24379.
[60] Jeanguenin L, Alcon C, Duby G, et al.AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity[J]. Plant J, 2011, 67(4):570-582.
[61] Reintanz B, Szyroki A, Ivashikina N, et al.AtKC1, a silent Arabidopsis potassium channel α-subunit modulates root hair K+ influx[J]. Proc Natl Acad Sci USA, 2002, 99(6):4079-4084.
[62] Duby G, Hosy E, Fizames C, et al.AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels[J]. Plant J, 2008, 53(1):115-123.
[63] Grefen C, Chen ZH, Honsbein A, et al.A novel motif essential for SNARE interaction with the K+ channel KC1 and channel gating in Arabidopsis[J]. Plant Cell, 2010, 22(9):3076-3092. |