Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (1): 51-69.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1205
Previous Articles Next Articles
TIAN Li1(), LI Jun-jiao2, DAI Xiao-feng2, ZHANG Dan-dan2, CHEN Jie-yin2()
Received:
2021-09-18
Online:
2022-01-26
Published:
2022-02-22
Contact:
CHEN Jie-yin
E-mail:biotian@qfnu.edu.cn;chenjieyin@caas.cn
TIAN Li, LI Jun-jiao, DAI Xiao-feng, ZHANG Dan-dan, CHEN Jie-yin. From Functional Genes to Biological Characteristics:The Molecular Basis of Pathogenicity in Verticillium dahliae[J]. Biotechnology Bulletin, 2022, 38(1): 51-69.
[1] |
Klosterman SJ, Atallah ZK, Vallad GE, et al. Diversity, pathogenicity, and management of Verticillium species[J]. Annu Rev Phytopathol, 2009, 47(1):39-62.
doi: 10.1146/phyto.2009.47.issue-1 URL |
[2] | Pegg GF, Brady BL. Verticillium wilts[M]. Wallingford:CABI, 2002. |
[3] | Wilhelm S. Longevity of the Verticillium wilt fungus in the laboratory and field[J]. Phytopathology, 1955, 45(3):180-181. |
[4] |
Chen JY, Klosterman SJ, Hu XP, et al. Key insights and research prospects at the dawn of the population genomics era for Verticillium dahliae[J]. Annu Rev Phytopathol, 2021, 59:31-51.
doi: 10.1146/phyto.2021.59.issue-1 URL |
[5] | Fradin EF, Thomma BPHJ. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum[J]. Mol Plant Pathol, 2006, 7(2):71-86. |
[6] | Chen JY, Xiao HL, Gui YJ, et al. Characterization of the Verticillium dahliae exoproteome involves in pathogenicity from cotton-containing medium[J]. Front Microbiol, 2016, 7:1709. |
[7] |
Dobinson KF, Grant SJ, Kang S. Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae[J]. Curr Genet, 2004, 45(2):104-110.
doi: 10.1007/s00294-003-0464-6 URL |
[8] |
Klosterman SJ, Subbarao KV, Kang S, et al. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens[J]. PLoS Pathog, 2011, 7(7):e1002137.
doi: 10.1371/journal.ppat.1002137 URL |
[9] |
de Jonge R, Bolton MD, Kombrink A, et al. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen[J]. Genome Res, 2013, 23(8):1271-1282.
doi: 10.1101/gr.152660.112 URL |
[10] |
Chen JY, Liu C, Gui YJ, et al. Comparative genomics reveals cotton-specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium[J]. New Phytol, 2018, 217(2):756-770.
doi: 10.1111/nph.14861 URL |
[11] |
Klimes A, Dobinson KF, Thomma BP, et al. Genomics spurs rapid advances in our understanding of the biology of vascular wilt pathogens in the genus Verticillium[J]. Annu Rev Phytopathol, 2015, 53:181-198.
doi: 10.1146/annurev-phyto-080614-120224 pmid: 26047557 |
[12] |
Buchner V, Nachmias A, Burstein Y. Isolation and partial characterization of a phytotoxic glycopeptide from a protein-lipopolysaccharide complex produced by a potato isolate of Verticillium dahliae[J]. FEBS Lett, 1982, 138(2):261-264.
doi: 10.1016/0014-5793(82)80456-0 URL |
[13] |
Meyer R, Dubery IA. High-affinity binding of a protein-lipopolysaccharide phytotoxin from Verticillium dahliae to cotton membranes[J]. FEBS Lett, 1993, 335(2):203-206.
pmid: 8253197 |
[14] |
Davis DA, Low PS, Heinstein P. Purification of a glycoprotein elicitor of phytoalexin formation from Verticillium dahliae[J]. Physiol Mol Plant Pathol, 1998, 52(4):259-273.
doi: 10.1006/pmpp.1998.0150 URL |
[15] | 章元寿, 王建新, 刘经芬, 等. 大丽轮枝菌毒素的分离、提纯及生物测定[J]. 真菌学报, 1989, 8(2):140-147. |
Zhang YS, Wang JX, Liu JF, et al. Studies on the isolation, purification and bioassay of toxin from Verticillium dahliae kleb[J]. Mycosystema, 1989, 8(2):140-147. | |
[16] | 储昭庆, 贾军伟, 周向军, 等. 大丽轮枝菌分泌糖蛋白的分离及其致萎性研究[J]. 植物学报, 1999, 41(9):972-976. |
Chu ZQ, Jia JW, Zhou XJ, et al. Isolation of glycoproteins from Verticillium dahliae and their phytotoxicity[J]. Acta Bot Sin, 1999, 41(9):972-976. | |
[17] |
Azpiroz-Leehan R, Feldmann KA. T-DNA insertion mutagenesis in Arabidopsis:going back and forth[J]. Trends Genet, 1997, 13(4):152-156.
pmid: 9097726 |
[18] |
de Groot MJ, Bundock P, Hooykaas PJ, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi[J]. Nat Biotechnol, 1998, 16(9):839-842.
pmid: 9743116 |
[19] | 徐荣旗, 汪佳妮, 陈捷胤, 等. 棉花黄萎病菌T-DNA插入突变体表型特征和侧翼序列分析[J]. 中国农业科学, 2010, 43(3):489-496. |
Xu RQ, Wang JN, Chen JY, et al. Analysis of T-DNA insertional flanking sequence and mutant phenotypic characteristics in Verticillium dahliae[J]. Sci Agric Sin, 2010, 43(3):489-496. | |
[20] | 张键. 向日葵大丽轮枝菌T-DNA突变体库的构建及微菌核形成和致病力相关基因的研究[D]. 呼和浩特:内蒙古农业大学, 2016. |
Zhang J. The T-DNA mutant library construction and the function study on genes involved in the microsclerotia formation and pathogenicity[D]. Hohhot:Inner Mongolia Agricultural University, 2016. | |
[21] |
Maruthachalam K, Klosterman SJ, Kang S, et al. Identification of pathogenicity-related genes in the vascular wilt fungus Verticillium dahliae by Agrobacterium tumefaciens-mediated T-DNA insertional mutagenesis[J]. Mol Biotechnol, 2011, 49(3):209-221.
doi: 10.1007/s12033-011-9392-8 pmid: 21424547 |
[22] |
Gao F, Zhou BJ, Li GY, et al. A glutamic acid-rich protein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity[J]. PLoS One, 2010, 5(12):e15319.
doi: 10.1371/journal.pone.0015319 URL |
[23] |
Zhang YL, Li ZF, Feng ZL, et al. Functional analysis of the pathogenicity-related gene VdPR1 in the vascular wilt fungus Verticillium dahliae[J]. PLoS One, 2016, 11(11):e0166000. DOI: 10.1371/journal.pone.0166000.
doi: 10.1371/journal.pone.0166000 URL |
[24] |
Zhang YL, Li ZF, Feng ZL, et al. Isolation and functional analysis of the pathogenicity-related gene VdPR3 from Verticillium dahliae on cotton[J]. Curr Genet, 2015, 61(4):555-566.
doi: 10.1007/s00294-015-0476-z URL |
[25] |
Zhang WQ, Gui YJ, Short DPG, et al. Verticillium dahliae transcription factor VdFTF1 regulates the expression of multiple secreted virulence factors and is required for full virulence in cotton[J]. Mol Plant Pathol, 2018, 19(4):841-857.
doi: 10.1111/mpp.2018.19.issue-4 URL |
[26] |
Zhang DD, Wang J, Wang D, et al. Population genomics demystifies the defoliation phenotype in the plant pathogen Verticillium dahliae[J]. New Phytol, 2019, 222(2):1012-1029.
doi: 10.1111/nph.2019.222.issue-2 URL |
[27] |
Sarmiento-Villamil JL, García-Pedrajas NE, Cañizares MC, et al. Molecular mechanisms controlling the disease cycle in the vascular pathogen Verticillium dahliae characterized through forward genetics and transcriptomics[J]. Mol Plant Microbe Interact, 2020, 33(6):825-841.
doi: 10.1094/MPMI-08-19-0228-R URL |
[28] |
de Jonge R, van Esse HP, Maruthachalam K, et al. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing[J]. PNAS, 2012, 109(13):5110-5115.
doi: 10.1073/pnas.1119623109 URL |
[29] |
Chavarro-Carrero EA, Vermeulen JP, E Torres D, et al. Comparative genomics reveals the in planta-secreted Verticillium dahliae Av2 effector protein recognized in tomato plants that carry the V2 resistance locus[J]. Environ Microbiol, 2021, 23(4):1941-1958.
doi: 10.1111/1462-2920.15288 pmid: 33078534 |
[30] |
Santhanam P, Thomma BP. Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes[J]. Mol Plant Microbe Interact, 2013, 26(2):249-256.
doi: 10.1094/MPMI-08-12-0198-R URL |
[31] |
Yu J, Li T, Tian LY, et al. Two Verticillium dahliae MAPKKKs, VdSsk2 and VdSte11, have distinct roles in pathogenicity, microsclerotial formation, and stress adaptation[J]. mSphere, 2019, 4(4):e00426-19. DOI: 10.1128/msphere.00426-19.
doi: 10.1128/msphere.00426-19 |
[32] |
Hu D, Wang C, Tao F, et al. Whole genome wide expression profiles on germination of Verticillium dahliae microsclerotia[J]. PLoS One, 2014, 9(6):e100046.
doi: 10.1371/journal.pone.0100046 URL |
[33] |
Hu X, Puri KD, Gurung S, et al. Proteome and metabolome analyses reveal differential responses in tomato -Verticillium dahliae-interactions[J]. J Proteomics, 2019, 207:103449.
doi: 10.1016/j.jprot.2019.103449 URL |
[34] |
Li J, Pei J, Liu Y, et al. Transcriptome sequencing of Verticillium dahliae from a cotton farm reveals positive correlation between virulence and tolerance of sugar-induced hyperosmosis[J]. PeerJ, 2019, 7:e8035.
doi: 10.7717/peerj.8035 URL |
[35] |
Sperschneider J, Gardiner DM, Dodds PN, et al. EffectorP:predicting fungal effector proteins from secretomes using machine learning[J]. New Phytol, 2016, 210(2):743-761.
doi: 10.1111/nph.13794 pmid: 26680733 |
[36] |
Sperschneider J, Dodds PN, Singh KB, et al. ApoplastP:prediction of effectors and plant proteins in the apoplast using machine learning[J]. New Phytol, 2018, 217(4):1764-1778.
doi: 10.1111/nph.14946 pmid: 29243824 |
[37] |
Wang D, Tian L, Zhang DD, et al. Functional analyses of small secreted cysteine-rich proteins identified candidate effectors in Verticillium dahliae[J]. Mol Plant Pathol, 2020, 21(5):667-685.
doi: 10.1111/mpp.12921 pmid: 32314529 |
[38] |
Tian L, Xu J, Zhou L, et al. VdMsb regulates virulence and microsclerotia production in the fungal plant pathogen Verticillium dahliae[J]. Gene, 2014, 550(2):238-244.
doi: 10.1016/j.gene.2014.08.035 URL |
[39] |
Li JJ, Zhou L, Yin CM, et al. The Verticillium dahliae Sho1-MAPK pathway regulates melanin biosynjournal and is required for cotton infection[J]. Environ Microbiol, 2019, 21(12):4852-4874.
doi: 10.1111/emi.v21.12 URL |
[40] |
Tzima A, Paplomatas EJ, Rauyaree P, et al. Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae[J]. Fungal Genet Biol, 2010, 47(5):406-415.
doi: 10.1016/j.fgb.2010.01.007 URL |
[41] |
Tzima AK, Paplomatas EJ, Tsitsigiannis DI, et al. The G protein β subunit controls virulence and multiple growth- and development-related traits in Verticillium dahliae[J]. Fungal Genet Biol, 2012, 49(4):271-283.
doi: 10.1016/j.fgb.2012.02.005 URL |
[42] | Tian LY, Wang YL, Yu J, et al. The mitogen-activated protein kinase kinase VdPbs2 of Verticillium dahliae regulates microsclerotia formation, stress response, and plant infection[J]. Front Microbiol, 2016, 7:1532. |
[43] |
Wang Y, Tian L, Xiong D, et al. The mitogen-activated protein kinase gene, VdHog1, regulates osmotic stress response, microsclerotia formation and virulence in Verticillium dahliae[J]. Fungal Genet Biol, 2016, 88:13-23.
doi: 10.1016/j.fgb.2016.01.011 URL |
[44] |
Rauyaree P, Ospina-Giraldo MD, Kang S, et al. Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae[J]. Curr Genet, 2005, 48(2):109-116.
doi: 10.1007/s00294-005-0586-0 URL |
[45] |
Tzima AK, Paplomatas EJ, Rauyaree P, et al. VdSNF1, the sucrose nonfermenting protein kinase gene of Verticillium dahliae, is required for virulence and expression of genes involved in cell-wall degradation[J]. Mol Plant Microbe Interact, 2011, 24(1):129-142.
doi: 10.1094/MPMI-09-09-0217 URL |
[46] |
Li L, Zhu T, Song Y, et al. Functional characterization of target of rapamycin signaling in Verticillium dahliae[J]. Front Microbiol, 2019, 10:501.
doi: 10.3389/fmicb.2019.00501 URL |
[47] |
Sarmiento-Villamil JL, García-Pedrajas NE, Baeza-Montañez L, et al. The APSES transcription factor Vst1 is a key regulator of development in microsclerotium- and resting mycelium-producingVerticilliumspecies[J]. Mol Plant Pathol, 2018, 19(1):59-76.
doi: 10.1111/mpp.12496 pmid: 27696683 |
[48] | Wang Y, Hu X, Fang Y, et al. Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in Verticillium dahliae[J]. Microbiology:Reading, 2018, 164(4):685-696. |
[49] |
Wang YL, Deng CL, Tian LY, et al. The transcription factor VdHapX controls iron homeostasis and is crucial for virulence in the vascular pathogen Verticillium dahliae[J]. mSphere, 2018, 3(5):e00400-18. DOI: 10.1128/msphere.00400-18.
doi: 10.1128/msphere.00400-18 |
[50] |
Luo X, Mao H, Wei Y, et al. The fungal-specific transcription factor Vdpf influences conidia production, melanized microsclerotia formation and pathogenicity in Verticillium dahliae[J]. Mol Plant Pathol, 2016, 17(9):1364-1381.
doi: 10.1111/mpp.2016.17.issue-9 URL |
[51] |
Tang C, Jin X, Klosterman SJ, et al. Convergent and distinctive functions of transcription factors VdYap1, VdAtf1, and VdSkn7 in the regulation of nitrosative stress resistance, microsclerotia formation, and virulence in Verticillium dahliae[J]. Mol Plant Pathol, 2020, 21(11):1451-1466.
doi: 10.1111/mpp.12988 URL |
[52] |
Bui TT, Harting R, Braus-Stromeyer SA, et al. Verticillium dahliae transcription factors Som1 and Vta3 control microsclerotia formation and sequential steps of plant root penetration and colonisation to induce disease[J]. New Phytol, 2019, 221(4):2138-2159.
doi: 10.1111/nph.2019.221.issue-4 URL |
[53] |
Tran VT, Braus-Stromeyer SA, Kusch H, et al. Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots[J]. New Phytol, 2014, 202(2):565-581.
doi: 10.1111/nph.2014.202.issue-2 URL |
[54] |
Harting R, Höfer A, Tran VT, et al. The Vta1 transcriptional regulator is required for microsclerotia melanization in Verticillium dahliae[J]. Fungal Biol, 2020, 124(5):490-500.
doi: 10.1016/j.funbio.2020.01.007 URL |
[55] | Xiong D, Wang Y, Tian L, et al. MADS-box transcription factor VdMcm1 regulates conidiation, microsclerotia formation, pathogenicity, and secondary metabolism of Verticillium dahliae[J]. Front Microbiol, 2016, 7:1192. |
[56] |
Xiong D, Wang Y, Tang C, et al. VdCrz1 is involved in microsclerotia formation and required for full virulence in Verticillium dahliae[J]. Fungal Genet Biol, 2015, 82:201-212.
doi: 10.1016/j.fgb.2015.07.011 URL |
[57] |
Tian L, Yu J, Wang Y, et al. The C2H2 transcription factor VdMsn2 controls hyphal growth, microsclerotia formation, and virulence of Verticillium dahliae[J]. Fungal Biol, 2017, 121(12):1001-1010.
doi: 10.1016/j.funbio.2017.08.005 URL |
[58] |
Tang C, Li T, Klosterman SJ, et al. The bZIP transcription factor VdAtf1 regulates virulence by mediating nitrogen metabolism in Verticillium dahliae[J]. New Phytol, 2020, 226(5):1461-1479.
doi: 10.1111/nph.v226.5 URL |
[59] | Starke J, Harting R, Maurus I, et al. Unfolded protein response and scaffold independent pheromone MAP kinase signaling control Verticillium dahliae growth, development, and plant pathogenesis[J]. J Fungi(Basel), 2021, 7(4):305. |
[60] | Timpner C, Braus-Stromeyer SA, Tran VT, et al. The Cpc1 regulator of the cross-pathway control of amino acid biosynjournal is required for pathogenicity of the vascular pathogen Verticillium longisporum[J]. Mol Plant Microbe Interactions®, 2013, 26(11):1312-1324. |
[61] |
Höfer AM, Harting R, Aβmann NF, et al. The velvet protein Vel1 controls initial plant root colonization and conidia formation for xylem distribution in Verticillium wilt[J]. PLoS Genet, 2021, 17(3):e1009434.
doi: 10.1371/journal.pgen.1009434 URL |
[62] |
Gui YJ, Chen JY, Zhang DD, et al. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1[J]. Environ Microbiol, 2017, 19(5):1914-1932.
doi: 10.1111/1462-2920.13695 URL |
[63] |
Gui YJ, Zhang WQ, Zhang DD, et al. A Verticillium dahliae extracellular cutinase modulates plant immune responses[J]. Mol Plant Microbe Interact, 2018, 31(2):260-273.
doi: 10.1094/MPMI-06-17-0136-R URL |
[64] |
Yang YK, Zhang Y, Li BB, et al. A Verticillium dahliae pectate lyase induces plant immune responses and contributes to virulence[J]. Front Plant Sci, 2018, 9:1271.
doi: 10.3389/fpls.2018.01271 URL |
[65] |
Cheng XX, Zhao LH, Klosterman SJ, et al. The endochitinase VDECH from Verticillium dahliae inhibits spore germination and activates plant defense responses[J]. Plant Sci, 2017, 259:12-23.
doi: 10.1016/j.plantsci.2017.03.002 URL |
[66] |
Yin Z, Wang N, Pi L, et al. Nicotiana benthamiana LRR-RLP NbEIX2 mediates the perception of an EIX-like protein from Verticillium dahliae[J]. J Integr Plant Biol, 2021, 63(5):949-960.
doi: 10.1111/jipb.v63.5 URL |
[67] |
Zhou BJ, Jia PS, Gao F, et al. Molecular characterization and functional analysis of a necrosis- and ethylene-inducing, protein-encoding gene family from Verticillium dahliae[J]. Mol Plant Microbe Interact, 2012, 25(7):964-975.
doi: 10.1094/MPMI-12-11-0319 URL |
[68] |
Santhanam P, van Esse HP, Albert I, et al. Evidence for functional diversification within a fungal NEP1-like protein family[J]. Mol Plant Microbe Interact, 2013, 26(3):278-286.
doi: 10.1094/MPMI-09-12-0222-R URL |
[69] |
Liu T, Song T, Zhang X, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynjournal[J]. Nat Commun, 2014, 5:4686.
doi: 10.1038/ncomms5686 URL |
[70] |
Kombrink A, Rovenich H, Shi-Kunne X, et al. Verticillium dahliae LysM effectors differentially contribute to virulence on plant hosts[J]. Mol Plant Pathol, 2017, 18(4):596-608.
doi: 10.1111/mpp.12520 pmid: 27911046 |
[71] |
Zhang Y, Gao YH, Liang YB, et al. The Verticillium dahliae SnodProt1-like protein VdCP1 contributes to virulence and triggers the plant immune system[J]. Front Plant Sci, 2017, 8:1880.
doi: 10.3389/fpls.2017.01880 pmid: 29163605 |
[72] |
Wang B, Yang X, Zeng H, et al. The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco[J]. Appl Microbiol Biotechnol, 2012, 93(1):191-201.
doi: 10.1007/s00253-011-3405-1 URL |
[73] |
Qin J, Wang KL, Sun LF, et al. The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity[J]. Elife, 2018, 7:e34902.
doi: 10.7554/eLife.34902 URL |
[74] |
Gao F, Zhang BS, Zhao JH, et al. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens[J]. Nat Plants, 2019, 5(11):1167-1176.
doi: 10.1038/s41477-019-0527-4 URL |
[75] |
Han LB, Li YB, Wang FX, et al. The cotton apoplastic protein CRR1 stabilizes chitinase 28 to facilitate defense against the fungal pathogen Verticillium dahliae[J]. Plant Cell, 2019, 31(2):520-536.
doi: 10.1105/tpc.18.00390 |
[76] |
Wang D, Chen JY, Song J, et al. Cytotoxic function of xylanase VdXyn4 in the plant vascular wilt pathogen Verticillium dahliae[J]. Plant Physiol, 2021, 187(1):409-429.
doi: 10.1093/plphys/kiab274 pmid: 34618145 |
[77] |
Liu L, Wang Z, Li J, et al. Verticillium dahliae secreted protein Vd424Y is required for full virulence, targets the nucleus of plant cells, and induces cell death[J]. Mol Plant Pathol, 2021, 22(9):1109-1120.
doi: 10.1111/mpp.13100 URL |
[78] |
Zhang L, Ni H, Du X, et al. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections[J]. New Phytol, 2017, 215(1):368-381.
doi: 10.1111/nph.2017.215.issue-1 URL |
[79] |
Ma AF, Zhang DP, Wang GX, et al. Verticillium dahliae effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance[J]. Plant Cell, doi(10. 1093):plcell.
doi: 10. 1093):plcell |
[80] |
Tian L, Li J, Huang C, et al. Cu/Zn superoxide dismutase(VdSO-D1)mediates reactive oxygen species detoxification and modulates virulence in Verticillium dahliae[J]. Mol Plant Pathol, 2021, 22(9):1092-1108.
doi: 10.1111/mpp.13099 pmid: 34245085 |
[81] |
Tian L, Sun WX, Li JJ, et al. Unconventionally secreted manganese superoxide dismutase VdSOD3 is required for the virulence of Verticillium dahliae[J]. Agronomy, 2020, 11(1):13.
doi: 10.3390/agronomy11010013 URL |
[82] |
Tian L, Huang CM, Zhang DD, et al. Extracellular superoxide dismutase VdSOD5 is required for virulence in Verticillium dahliae[J]. J Integr Agric, 2021, 20(7):1858-1870.
doi: 10.1016/S2095-3119(20)63353-6 URL |
[83] |
Zhang J, Zhang YY, Yang JF, et al. The α-1, 6-mannosyltransferase VdOCH1 plays a major role in microsclerotium formation and virulence in the soil-borne pathogen Verticillium dahliae[J]. Fungal Biol, 2019, 123(7):539-546.
doi: 10.1016/j.funbio.2019.05.007 URL |
[84] |
Xie CJ, Li QL, Yang XY. Characterization of VdASP F2 secretory factor from Verticillium dahliae by a fast and easy gene knockout system[J]. Mol Plant Microbe Interact, 2017, 30(6):444-454.
doi: 10.1094/MPMI-01-17-0007-R URL |
[85] |
Klimes A, Dobinson KF. A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae[J]. Fungal Genet Biol, 2006, 43(4):283-294.
pmid: 16488633 |
[86] |
Liu SY, Chen JY, Wang JL, et al. Molecular characterization and functional analysis of a specific secreted protein from highly virulent defoliating Verticillium dahliae[J]. Gene, 2013, 529(2):307-316.
doi: 10.1016/j.gene.2013.06.089 URL |
[87] | Sun L, Qin J, Rong W, et al. Cellophane surface-induced gene, VdCSIN1, regulates hyphopodium formation and pathogenesis via cAMP-mediated signalling in Verticillium dahliae[J]. Mol Plant Pathol, 2019, 20(3):323-333. |
[88] |
Zhao YL, Zhou TT, Guo HS. Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae[J]. PLoS Pathog, 2016, 12(7):e1005793.
doi: 10.1371/journal.ppat.1005793 URL |
[89] | 孙琦, 何芳, 邵胜楠, 等. 棉花黄萎病菌VdHP1的克隆及功能分析[J]. 中国农业科学, 2020, 53(14):2872-2884. |
Sun Q, He F, Shao SN, et al. Cloning and functional analysis of VdHP1 in Verticillium dahliae from cotton[J]. Sci Agric Sin, 2020, 53(14):2872-2884. | |
[90] |
Zhou TT, Zhao YL, Guo HS. Secretory proteins are delivered to the septin-organized penetration interface during root infection by Verticillium dahliae[J]. PLoS Pathog, 2017, 13(3):e1006275.
doi: 10.1371/journal.ppat.1006275 URL |
[91] |
Wang J, Tian L, Zhang DD, et al. SNARE-encoding genes VdSec22 and VdSso1 mediate protein secretion required for full virulence in Verticillium dahliae[J]. Mol Plant Microbe Interact, 2018, 31(6):651-664.
doi: 10.1094/MPMI-12-17-0289-R URL |
[92] |
Feng ZD, Tian J, Han LB, et al. The Myosin5-mediated actomyosin motility system is required for Verticillium pathogenesis of cotton[J]. Environ Microbiol, 2018, 20(4):1607-1621.
doi: 10.1111/emi.2018.20.issue-4 URL |
[93] |
Zhang T, Zhang BS, Hua CL, et al. VdPKS1 is required for melanin formation and virulence in a cotton wilt pathogen Verticillium dahliae[J]. Sci China Life Sci, 2017, 60(8):868-879.
doi: 10.1007/s11427-017-9075-3 pmid: 28755294 |
[94] |
Fan R, Klosterman SJ, Wang CH, et al. Vayg1 is required for microsclerotium formation and melanin production in Verticillium dahliae[J]. Fungal Genet Biol, 2017, 98:1-11.
doi: 10.1016/j.fgb.2016.11.003 URL |
[95] |
Zhang DD, Wang XY, Chen JY, et al. Identification and characterization of a pathogenicity-related gene VdCYP1 from Verticillium dahliae[J]. Sci Rep, 2016, 6:27979.
doi: 10.1038/srep27979 URL |
[96] |
Luo X, Tian T, Tan X, et al. VdNPS, a nonribosomal peptide synthetase, is involved in regulating virulence in Verticillium dahliae[J]. Phytopathology, 2020, 110(8):1398-1409.
doi: 10.1094/PHYTO-02-20-0031-R URL |
[97] |
Wang H, Chen B, Tian J, et al. Verticillium dahliae VdBre1 is required for cotton infection by modulating lipid metabolism and secondary metabolites[J]. Environ Microbiol, 2021, 23(4):1991-2003.
doi: 10.1111/emi.v23.4 URL |
[98] |
Yuan L, Su Y, Zhou S, et al. A RACK1-like protein regulates hyphal morphogenesis, root entry and in vivo virulence in Verticillium dahliae[J]. Fungal Genet Biol, 2017, 99:52-61.
doi: S1087-1845(17)30009-9 pmid: 28089629 |
[99] |
Klimes A, Neumann MJ, Grant SJ, et al. Characterization of the glyoxalase I gene from the vascular wilt fungus Verticillium dahliae[J]. Can J Microbiol, 2006, 52(9):816-822.
pmid: 17110973 |
[100] |
Zhou L, Zhao J, Guo W, et al. Functional analysis of autophagy genes via Agrobacterium-mediated transformation in the vascular Wilt fungus Verticillium dahliae[J]. J Genet Genomics, 2013, 40(8):421-431.
doi: 10.1016/j.jgg.2013.04.006 pmid: 23969251 |
[101] | Vangalis V, Papaioannou IA, Markakis EA, et al. Hex1, the major component of woronin bodies, is required for normal development, pathogenicity, and stress response in the plant pathogenic fungus Verticillium dahliae[J]. J Fungi(Basel), 2020, 6(4):344. |
[102] |
Su XF, Lu GQ, Li XK, et al. Host-induced gene silencing of an adenylate kinase gene involved in fungal energy metabolism improves plant resistance to Verticillium dahliae[J]. Biomolecules, 2020, 10(1):127.
doi: 10.3390/biom10010127 URL |
[103] |
Santhanam P, Boshoven JC, Salas O, et al. Rhamnose synthase activity is required for pathogenicity of the vascular wilt fungusVerticillium dahliae[J]. Mol Plant Pathol, 2017, 18(3):347-362.
doi: 10.1111/mpp.12401 URL |
[104] |
Tian H, Zhou L, Guo W, et al. Small GTPase Rac1 and its interaction partner Cla4 regulate polarized growth and pathogenicity in Verticillium dahliae[J]. Fungal Genet Biol, 2015, 74:21-31.
doi: 10.1016/j.fgb.2014.11.003 pmid: 25475370 |
[105] |
Kramer HM, Cook DE, van den Berg GCM, et al. Three putative DNA methyltransferases of Verticillium dahliae differentially contribute to DNA methylation that is dispensable for growth, development and virulence[J]. Epigenetics Chromatin, 2021, 14(1):21.
doi: 10.1186/s13072-021-00396-6 URL |
[106] |
Su XF, Rehman L, Guo HM, et al. The oligosaccharyl transferase subunit STT3 mediates fungal development and is required for virulence in Verticillium dahliae[J]. Curr Genet, 2018, 64(1):235-246.
doi: 10.1007/s00294-017-0729-0 URL |
[107] |
Li ZF, Liu YJ, Feng ZL, et al. VdCYC8, encoding CYC8 glucose repression mediator protein, is required for microsclerotia formation and full virulence in Verticillium dahliae[J]. PLoS One, 2015, 10(12):e0144020.
doi: 10.1371/journal.pone.0144020 URL |
[108] |
Deng S, Wang CY, Zhang X, et al. VdNUC-2, the key regulator of phosphate responsive signaling pathway, is required for Verticillium dahliae infection[J]. PLoS One, 2015, 10(12):e0145190.
doi: 10.1371/journal.pone.0145190 URL |
[109] |
Qi XL, Li XK, Guo HM, et al. VdPLP, A patatin-like phospholipase in Verticillium dahliae, is involved in cell wall integrity and required for pathogenicity[J]. Genes, 2018, 9(3):162.
doi: 10.3390/genes9030162 URL |
[110] |
Qi X, Su X, Guo H, et al. VdThit, a thiamine transport protein, is required for pathogenicity of the vascular pathogen Verticillium dahliae[J]. Mol Plant Microbe Interact, 2016, 29(7):545-559.
doi: 10.1094/MPMI-03-16-0057-R URL |
[111] |
Short DP, Gurung S, Hu XP, et al. Maintenance of sex-related genes and the co-occurrence of both mating types in Verticillium dahliae[J]. PLoS One, 2014, 9(11):e112145.
doi: 10.1371/journal.pone.0112145 URL |
[112] |
Vangalis V, Papaioannou IA, Markakis EA, et al. The NADPH oxidase A of Verticillium dahliae is essential for pathogenicity, normal development, and stress tolerance, and it interacts with Yap1 to regulate redox homeostasis[J]. J. Fungi, 2021, 7(9):740.
doi: 10.3390/jof7090740 URL |
[113] |
Zhang J, Cui W, Abdul Haseeb H, et al. VdNop12, containing two tandem RNA recognition motif domains, is a crucial factor for pathogenicity and cold adaption in Verticillium dahliae[J]. Environ Microbiol, 2020, 22(12):5387-5401.
doi: 10.1111/emi.v22.12 URL |
[114] |
Wang S, Wu XM, Liu CH, et al. Verticillium dahliae chromatin remodeling facilitates the DNA damage repair in response to plant ROS stress[J]. PLoS Pathog, 2020, 16(4):e1008481. DOI: 10.1371/journal.ppat.1008481.
doi: 10.1371/journal.ppat.1008481 URL |
[115] |
Li X, Su X, Lu G, et al. VdOGDH is involved in energy metabolism and required for virulence of Verticillium dahliae[J]. Curr Genet, 2020, 66(2):345-359.
doi: 10.1007/s00294-019-01025-2 URL |
[116] |
Qin TF, Hao W, Sun RR, et al. Verticillium dahliae VdTHI20, involved in pyrimidine biosynjournal, is required for DNA repair functions and pathogenicity[J]. Int J Mol Sci, 2020, 21(4):1378.
doi: 10.3390/ijms21041378 URL |
[117] | Zhu X, Soliman A, Islam MR, et al. Verticillium dahliae’s isochorismatase hydrolase is a virulence factor that contributes to interference with potato’s salicylate and jasmonate defense signaling[J]. Front Plant Sci, 2017, 8:399. |
[118] | Zhang Y, Wang XF, Rong W, et al. Histochemical analyses reveal that stronger intrinsic defenses in Gossypium barbadense than in G. hirsutum are associated with resistance to Verticillium dahliae[J]. Mol Plant Microbe Interactions®, 2017, 30(12):984-996. |
[119] |
Street PFS, Cooper RM. Quantitative measurement of vascular flow in petioles of healthy and Verticillium-infected tomato[J]. Plant Pathol, 1984, 33(4):483-492.
doi: 10.1111/ppa.1984.33.issue-4 URL |
[120] | Pegg GF. Phytotoxin Production by Verticillium albo-atrum Reinke et Berthold[J]. Nature, 1965, 208(5016):1228-1229. |
[121] |
Wang JY, Cai Y, Gou JY, et al. VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting[J]. Appl Environ Microbiol, 2004, 70(8):4989-4995.
doi: 10.1128/AEM.70.8.4989-4995.2004 URL |
[122] |
Jones JDG, Dangl JL. The plant immune system[J]. Nature, 2006, 444(7117):323-329.
doi: 10.1038/nature05286 URL |
[123] |
Zipfel C. Pattern-recognition receptors in plant innate immunity[J]. Curr Opin Immunol, 2008, 20(1):10-16.
doi: 10.1016/j.coi.2007.11.003 pmid: 18206360 |
[124] |
Zhang Y, Gao Y, Liang Y, et al. Verticillium dahliae PevD1, an Alt a 1-like protein, targets cotton PR5-like protein and promotes fungal infection[J]. J Exp Bot, 2019, 70(2):613-626.
doi: 10.1093/jxb/ery351 pmid: 30295911 |
[125] |
Liang Y, Li Z, Zhang Y, et al. Nbnrp1 mediates Verticillium dahliae effector PevD1-triggered defense responses by regulating sesquiterpenoid phytoalexins biosynjournal pathway in Nicotiana benthamiana[J]. Gene, 2021, 768:145280.
doi: 10.1016/j.gene.2020.145280 URL |
[126] |
Zhang Y, Gao YH, Wang HL, et al. Verticillium dahliae secretory effector PevD1 induces leaf senescence by promoting ORE1-mediated ethylene biosynjournal[J]. Mol Plant, 2021, 14(11):1901-1917.
doi: 10.1016/j.molp.2021.07.014 URL |
[127] |
Lo Presti L, Lanver D, Schweizer G, et al. Fungal effectors and plant susceptibility[J]. Annu Rev Plant Biol, 2015, 66:513-545.
doi: 10.1146/arplant.2015.66.issue-1 URL |
[128] |
de Sain M, Rep M. The role of pathogen-secreted proteins in fungal vascular wilt diseases[J]. Int J Mol Sci, 2015, 16(10):23970-23993.
doi: 10.3390/ijms161023970 URL |
[129] | 王宝丽. 大丽轮枝菌纤维素结合域蛋白VdCBM1调控寄主免疫反应的致病机理研究[D]. 北京:中国农业科学院, 2019. |
Wang BL. Host immune response regulated by cellulose binding domain protein VdCBM1 of Verticillium dahliae[D]. Beijing:Chinese Academy of Agricultural Sciences, 2019. | |
[130] |
Fradin EF, Zhang Z, Juarez Ayala JC, et al. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1[J]. Plant Physiol, 2009, 150(1):320-332.
doi: 10.1104/pp.109.136762 URL |
[131] |
Usami T, Momma N, Kikuchi S, et al. Race 2 of Verticillium dahliae infecting tomato in Japan can be split into two races with differential pathogenicity on resistant rootstocks[J]. Plant Pathol, 2017, 66(2):230-238.
doi: 10.1111/ppa.2017.66.issue-2 URL |
[132] |
Bhat RG, Subbarao KV. Host range specificity in Verticillium dahliae[J]. Phytopathology, 1999, 89(12):1218-1225.
doi: 10.1094/PHYTO.1999.89.12.1218 pmid: 18944648 |
[133] |
Usami T, Itoh M, Amemiya Y. Asexual fungus Verticillium dahliae is potentially heterothallic[J]. J Gen Plant Pathol, 2009, 75(6):422-427.
doi: 10.1007/s10327-009-0197-6 URL |
[134] |
Usami T, Itoh M, Amemiya Y. Mating type gene MAT1-2-1 is common among Japanese isolates of Verticillium dahliae[J]. Physiol Mol Plant Pathol, 2008, 73(6):133-137.
doi: 10.1016/j.pmpp.2009.04.002 URL |
[135] |
Milgroom MG, Jiménez-Gasco MDM, Olivares García C, et al. Recombination between clonal lineages of the asexual fungus Verticillium dahliae detected by genotyping by sequencing[J]. PLoS One, 2014, 9(9):e106740.
doi: 10.1371/journal.pone.0106740 URL |
[136] |
Short DP, Gurung S, Koike ST, et al. Frequency of Verticillium species in commercial spinach fields and transmission of V. dahliae from spinach to subsequent lettuce crops[J]. Phytopathology, 2015, 105(1):80-90.
doi: 10.1094/PHYTO-02-14-0046-R pmid: 25098494 |
[137] |
Joaquim TR. Vegetative compatibility and virulence of strains of Verticillium dahliae from soil and potato plants[J]. Phytopathology, 1991, 81(5):552.
doi: 10.1094/Phyto-81-552 URL |
[138] |
Strausbaugh CA. Schroth MN, Weinhold AR, et al. Assessment of vegetative compatibility of Verticillium dahliae Tester strains and isolates from California potatoes[J]. Phytopathology, 1992, 82(1):61.
doi: 10.1094/Phyto-82-61 URL |
[139] |
Dhar N, Chen JY, Subbarao KV, et al. Hormone signaling and its interplay with development and defense responses in Verticillium-plant interactions[J]. Front Plant Sci, 2020, 11:584997.
doi: 10.3389/fpls.2020.584997 URL |
[140] |
Duressa D, Anchieta A, Chen D, et al. RNA-seq analyses of gene expression in the microsclerotia of Verticillium dahliae[J]. BMC Genomics, 2013, 14:607.
doi: 10.1186/1471-2164-14-607 URL |
[141] |
Xiong D, Wang Y, Ma J, et al. Deep mRNA sequencing reveals stage-specific transcriptome alterations during microsclerotia development in the smoke tree vascular wilt pathogen, Verticillium dahliae[J]. BMC Genomics, 2014, 15:324.
doi: 10.1186/1471-2164-15-324 URL |
[142] | 樊荣, 徐小鸿, 曹亚松, 等. 大丽轮枝菌黑色素合成相关基因与微菌核形成的关系[J]. 菌物学报, 2017, 36(12):1608-1615. |
Fan R, Xu XH, Cao YS, et al. The role of DHN melanin biosynjournal genes in microsclerotium formation in Verticillium dahliae[J]. Mycosystema, 2017, 36(12):1608-1615. |
[1] | XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava [J]. Biotechnology Bulletin, 2023, 39(6): 31-48. |
[2] | PAN Guo-qiang, WU Si-yuan, LIU Lu, GUO Hui-ming, CHENG Hong-mei, SU Xiao-feng. Construction and Preliminary Analysis of Verticillim dahliae Mutant Library [J]. Biotechnology Bulletin, 2023, 39(5): 112-119. |
[3] | WEN Chang, LIU Chen, LU Shi-yun, XU Zhong-bing, AI Chao-fan, LIAO Han-peng, ZHOU Shun-gui. Biological Characteristics and Genome Analysis of a Novel Multidrug-resistant Shigella flexneri Phage [J]. Biotechnology Bulletin, 2022, 38(9): 127-135. |
[4] | HUANG Jing-xiao, SHANG Jun-kang, CHEN Hui-min, SHEN Jia-min, LI Yuan-yuan, YU Yu-li, NI Jin-dong, LIN Bo-kun. Biological Characterization and Genome Analysis of a Lytic Phage Infecting Salmonella [J]. Biotechnology Bulletin, 2021, 37(6): 136-146. |
[5] | CHEN Yi-dan, ZHANG Yu, YANG Jie, ZHANG Qin, JIANG Li. Exploration of Key Functional Genes Affecting Milk Production Traits in Dairy Cattle Based on RNA-seq [J]. Biotechnology Bulletin, 2020, 36(9): 244-252. |
[6] | GONG Zheng, ZHANG Jun-jie, ZHONG Deng-ke. Biological Characteristics and Antibiotic Resistance of Erysipelothrix rhusiopathiae Isolated from East China [J]. Biotechnology Bulletin, 2020, 36(6): 174-182. |
[7] | ZHANG Hai-miao, LI Yang, LIU Hai-feng, KONG Ling-guang, DING Xin-hua. Research Progress on Regulatory Genes of Important Agronomic Traits and Breeding Utilization in Rice [J]. Biotechnology Bulletin, 2020, 36(12): 155-169. |
[8] | WANG Ya-li, KANG Chun-xiao, YANG Chuan-zhen, WEI Yi-xuan, WANG Rui-fei, LI Ming-jun, YANG Qing-xiang. Isolation and Identification of a Root Rot Pathogen of Rehmannia glutinosa and Its Characterization [J]. Biotechnology Bulletin, 2020, 36(1): 37-44. |
[9] | LI Hui ZHA, Jian-jun, SUN Qing-ye. Effects of Acid Mine Drainage on the Abundance of Functional Genes Involved in Nitrogen Cycle in Soil Profiles [J]. Biotechnology Bulletin, 2019, 35(9): 249-256. |
[10] | ZHU Rong-gui, GUAN Tong-wei, JIANG Xiu-juan. Isolation of Rare Actinobacteria in 5 Ecodistricts of Tarim Basin and Distribution of the Genes Synthesizing Antibiotics [J]. Biotechnology Bulletin, 2018, 34(9): 230-236. |
[11] | ZHAO Xiao-qiang, CHEN Zhi-rong, HE Fang, SHEN Nan, GAO Feng, HUANG Jia-feng. Preparation and Regeneration of Protoplast from Verticillium dahliae [J]. Biotechnology Bulletin, 2018, 34(7): 166-173. |
[12] | LI Xiao-kai ,WANG Gui ,QIAO Xian ,FAN Yi-xing ,ZHANG Lei ,MA Yu-hao ,NIE Rui-xue ,WANG Rui-jun ,HE Li-bing ,SU Rui. Research Progress on Whole-genome Sequencing on Important Domesticated Animals [J]. Biotechnology Bulletin, 2018, 34(6): 11-21. |
[13] | XIE Cheng-jian. Research Advances on Verticillium dahliae Genes Resulting in Pathogenicity and Microsclerotia Formation [J]. Biotechnology Bulletin, 2018, 34(4): 51-59. |
[14] | JIANG Lan, PANG Jin-huan, XIAO Wei-lie, ZHANG Guo-li, LIU Jun, YANG Chao. Control Effects of 56 Extracts of Chinese Traditional Medicine on Cotton Wilt Disease [J]. Biotechnology Bulletin, 2018, 34(2): 128-134. |
[15] | WANG Zhu-jun, WANG Shang, LIU Yang-ying, FENG Kai, DENG Ye. The Applications of Metagenomics in the Detection of Environmental Microbes Involving in Nitrogen Cycle [J]. Biotechnology Bulletin, 2018, 34(1): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||