Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (3): 92-102.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0571
Previous Articles Next Articles
HU Shan(), LIANG Wei-qu(), HUANG Hao, XU Cong, LUO Hua-jian, HU Chu-wei, HUANG Xiao-yan, CHEN Shi-li
Received:
2021-04-29
Online:
2022-03-26
Published:
2022-04-06
Contact:
LIANG Wei-qu
E-mail:29657166@qq.com;lwqkml@126.com
HU Shan, LIANG Wei-qu, HUANG Hao, XU Cong, LUO Hua-jian, HU Chu-wei, HUANG Xiao-yan, CHEN Shi-li. Screening,Identification and Antagonism of Phosphate-Solubilizing Bacteria from the Compost Chinese Medicinal Herbal Residues[J]. Biotechnology Bulletin, 2022, 38(3): 92-102.
Fig. 1 Phosphate-solubilizing capacities of different stra-ins cultivated in liquid medium Different lowercase letters indicate significant differences at 0.05 level among treatments. The same below
菌株 Strain | 溶磷圈直径 Diameter of phosphate Solubilizing halo D/mm | 菌落直径 Colony diameter d /mm | D/d |
---|---|---|---|
YP1 | 13.43±0.24d | 4.77±0.22b | 2.83±0.15c |
YP2 | 18.53±0.33b | 5.13±0.13b | 3.62±0.15b |
YP3 | 14.60±0.23c | 6.47±0.24a | 2.26±0.05d |
YP4 | 18.17±0.17b | 6.13±0.07a | 2.96±0.03c |
YP5 | 21.67±0.24a | 5.10±0.25b | 4.27±0.20a |
Table 1 Phosphate solubilization capacity of different strains cultivated on solid nutrient medium
菌株 Strain | 溶磷圈直径 Diameter of phosphate Solubilizing halo D/mm | 菌落直径 Colony diameter d /mm | D/d |
---|---|---|---|
YP1 | 13.43±0.24d | 4.77±0.22b | 2.83±0.15c |
YP2 | 18.53±0.33b | 5.13±0.13b | 3.62±0.15b |
YP3 | 14.60±0.23c | 6.47±0.24a | 2.26±0.05d |
YP4 | 18.17±0.17b | 6.13±0.07a | 2.96±0.03c |
YP5 | 21.67±0.24a | 5.10±0.25b | 4.27±0.20a |
生理生化试验Physiological and biochemical test | 检测结果Result | 生理生化试验Physiological and biochemical tests | 检测结果Result | |
---|---|---|---|---|
硝酸盐还原 Nitrate reduction | - | 色氨酸酶Tryptophanase | - | |
精氨酸双水解酶 Arginine dihydrolase | + | 脲酶Urease | - | |
明胶液化 Gelatine liquefication | + | β-半乳糖苷酶β-galactosidase | - | |
阿拉伯糖Arabinose fermentation | - | 甘露糖Mannose | - | |
麦芽糖Maltose fermentation | - | 葡萄糖酸盐Gluconate | + | |
己二酸Adipic Acid | + | 苹果酸Malic acid | + | |
苯乙酸Phenylacetic acid | - | 氧化酶Oxidase | + | |
葡萄糖酸Gluconic acid | - | 七叶灵水解 Hydrolysis of aescin | - | |
葡萄糖 Glucose fermentation | + | N-乙酰-葡萄糖胺n-acetyl-glucosamine | + | |
柠檬酸Citric acid | + | 甘露醇Mannitol | + | |
癸酸 Capric acid | + |
Table 2 Physiological and biochemical identification results of YP5
生理生化试验Physiological and biochemical test | 检测结果Result | 生理生化试验Physiological and biochemical tests | 检测结果Result | |
---|---|---|---|---|
硝酸盐还原 Nitrate reduction | - | 色氨酸酶Tryptophanase | - | |
精氨酸双水解酶 Arginine dihydrolase | + | 脲酶Urease | - | |
明胶液化 Gelatine liquefication | + | β-半乳糖苷酶β-galactosidase | - | |
阿拉伯糖Arabinose fermentation | - | 甘露糖Mannose | - | |
麦芽糖Maltose fermentation | - | 葡萄糖酸盐Gluconate | + | |
己二酸Adipic Acid | + | 苹果酸Malic acid | + | |
苯乙酸Phenylacetic acid | - | 氧化酶Oxidase | + | |
葡萄糖酸Gluconic acid | - | 七叶灵水解 Hydrolysis of aescin | - | |
葡萄糖 Glucose fermentation | + | N-乙酰-葡萄糖胺n-acetyl-glucosamine | + | |
柠檬酸Citric acid | + | 甘露醇Mannitol | + | |
癸酸 Capric acid | + |
抗菌素Antibiotics | 含药量Drug concentration/(μg·μL-1) | 抑菌圈直径Inhibitory zone diameter d/mm | 敏感性Sensitivity |
---|---|---|---|
氨苄西林Ampicillin | 0.5 | 0 | R |
诺氟沙星Norfloxacin | 0.5 | 32.00±0.00 | S |
氯霉素Chloramphenicol | 1.5 | 17.67±0.33 | S |
利福平 Rifampin | 0.25 | 0 | R |
亚胺培南Imipenem | 0.5 | 0 | R |
卡那霉素 Kanamycin | 1.5 | 8.67±0.67 | R |
庆大霉素 Gentamicin | 0.5 | 19.00±0.58 | S |
四环素Tetracycline | 1.5 | 0 | R |
萘啶酸Nalidixic acid | 1.5 | 13.33±0.33 | I |
链霉素Streptomycin | 0.5 | 12.00±0.00 | I |
恩诺沙星Enrofloxacin | 0.5 | 21.33±0.67 | S |
丁胺卡那霉素Amikacin | 1.5 | 20.67±0.33 | S |
多西环素Doxycycline | 1.5 | 8.67±0.33 | R |
万古霉素Vancomycin | 1.5 | 0 | R |
阿莫西林Amoxicillin | 1 | 0 | R |
Table 3 Test results on the antimicrobial susceptibility of YP5
抗菌素Antibiotics | 含药量Drug concentration/(μg·μL-1) | 抑菌圈直径Inhibitory zone diameter d/mm | 敏感性Sensitivity |
---|---|---|---|
氨苄西林Ampicillin | 0.5 | 0 | R |
诺氟沙星Norfloxacin | 0.5 | 32.00±0.00 | S |
氯霉素Chloramphenicol | 1.5 | 17.67±0.33 | S |
利福平 Rifampin | 0.25 | 0 | R |
亚胺培南Imipenem | 0.5 | 0 | R |
卡那霉素 Kanamycin | 1.5 | 8.67±0.67 | R |
庆大霉素 Gentamicin | 0.5 | 19.00±0.58 | S |
四环素Tetracycline | 1.5 | 0 | R |
萘啶酸Nalidixic acid | 1.5 | 13.33±0.33 | I |
链霉素Streptomycin | 0.5 | 12.00±0.00 | I |
恩诺沙星Enrofloxacin | 0.5 | 21.33±0.67 | S |
丁胺卡那霉素Amikacin | 1.5 | 20.67±0.33 | S |
多西环素Doxycycline | 1.5 | 8.67±0.33 | R |
万古霉素Vancomycin | 1.5 | 0 | R |
阿莫西林Amoxicillin | 1 | 0 | R |
Fig. 6 Antagonistic activity of YP5 fermentation A:Fusarium solani. B:Alternaria solani. C:Colletotrichum capsici. D:Rhizoctonia solani. E:Cercospora arachidicola Hori. F:Fusarium graminearum. G:Fusarium oxysporum f. sp. H:Colletotrichum falcatum Went. I:Bipolaris maydis. In each image,the left petridish is a blank plate control,the right petridish is a plate added with fermentation broth
植物病原真菌 Plant pathogenic fungus | 发酵液抑菌率 Inhibition rate of fermentation/% | 无菌滤液抑菌率 Inhibition rate of cell-free filtrate/% |
---|---|---|
冬瓜根腐病菌Fusarium solani | 84.29 | 81.19 |
番茄早疫病菌Alternaria solani | 73.22 | 71.56 |
辣椒炭疽病菌Colletotrichum capsici | 73.71 | 70.32 |
水稻纹枯病菌Rhizoctonia solani | 71.19 | 72.63 |
花生褐斑病菌Cercospora arachidicola Hori | 80.56 | 75.76 |
小麦赤霉病菌Fusarium graminearum | 77.34 | 78.54 |
香蕉枯萎病菌Fusarium oxysporum f. sp. | 51.07 | 52.85 |
甘蔗赤腐病菌Colletotrichum falcatum Went. | 54.87 | 55.24 |
玉米小斑病菌Bipolaris maydis | 55.58 | 52.18 |
Table 4 Antagonistic activity results of YP5 fermentation and cell-free filtrate
植物病原真菌 Plant pathogenic fungus | 发酵液抑菌率 Inhibition rate of fermentation/% | 无菌滤液抑菌率 Inhibition rate of cell-free filtrate/% |
---|---|---|
冬瓜根腐病菌Fusarium solani | 84.29 | 81.19 |
番茄早疫病菌Alternaria solani | 73.22 | 71.56 |
辣椒炭疽病菌Colletotrichum capsici | 73.71 | 70.32 |
水稻纹枯病菌Rhizoctonia solani | 71.19 | 72.63 |
花生褐斑病菌Cercospora arachidicola Hori | 80.56 | 75.76 |
小麦赤霉病菌Fusarium graminearum | 77.34 | 78.54 |
香蕉枯萎病菌Fusarium oxysporum f. sp. | 51.07 | 52.85 |
甘蔗赤腐病菌Colletotrichum falcatum Went. | 54.87 | 55.24 |
玉米小斑病菌Bipolaris maydis | 55.58 | 52.18 |
[1] | 钟传青. 解磷微生物溶解磷矿粉和土壤难溶磷的特性及其溶磷方式研究[D]. 南京:南京农业大学, 2004. |
Zhong CQ. Studies on solubilizing effects on phosphate rock powder and insoluble phosphorus in soil of P-solubilizing microorganisms and their mechanism[D]. Nanjing:Nanjing Agricultural University, 2004. | |
[2] |
Westheimer F. Why nature chose phosphates[J]. Science, 1987, 235(4793):1173-1178.
pmid: 2434996 |
[3] | 曹宁, 张玉斌, 陈新平. 中国农田土壤磷平衡现状及驱动因子分析[J]. 中国农学通报, 2009, 25(13):220-225. |
Cao N, Zhang YB, Chen XP. Spatial-temporal change of phosphorus balance and the driving factors for agroecosystems in China[J]. Chin Agric Sci Bull, 2009, 25(13):220-225. | |
[4] |
Gustafsson JP, Mwamila LB, Kergoat K. The pH dependence of phosphate sorption and desorption in Swedish agricultural soils[J]. Geoderma, 2012, 189/190:304-311.
doi: 10.1016/j.geoderma.2012.05.014 URL |
[5] |
Roberts TL, Johnston AE. Phosphorus use efficiency and management in agriculture[J]. Resour Conserv Recycl, 2015, 105:275-281.
doi: 10.1016/j.resconrec.2015.09.013 URL |
[6] | 阳洁, 江院, 王晓甜, 等. 几株高效溶磷解钾药用稻内生固氮菌的筛选与鉴定[J]. 农业生物技术学报, 2016(2):186-195. |
Yang J, Jiang Y, Wang XT, et al. Screening and identification of several endophytic diazotrophs with high capability of phosphate solubilizing and potassium decomposing from Oryza officinalis[J]. Chin J Agric Biotechnol, 2016(2):186-195. | |
[7] |
Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria(PGPR):emergence in agriculture[J]. World J Microbiol Biotechnol, 2012, 28(4):1327-1350.
doi: 10.1007/s11274-011-0979-9 URL |
[8] |
Gupta M, Kiran S, Gulati A, et al. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynjournal of Aloe barbadensis Miller[J]. Microbiol Res, 2012, 167(6):358-363.
doi: 10.1016/j.micres.2012.02.004 URL |
[9] |
Holguin G, Vazquez P, Bashan Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems:an overview[J]. Biol Fertil Soils, 2001, 33(4):265-278.
doi: 10.1007/s003740000319 URL |
[10] |
Oliveira CA, Alves VMC, Marriel IE, et al. Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome[J]. Soil Biol Biochem, 2009, 41(9):1782-1787.
doi: 10.1016/j.soilbio.2008.01.012 URL |
[11] | 秦利均, 杨永柱, 杨星勇. 土壤溶磷微生物溶磷、解磷机制研究进展[J]. 生命科学研究, 2019, 23(1):59-64, 86. |
Qin LJ, Yang YZ, Yang XY. Advances in mechanisms of soil phosphorus solubilization and dissolution by phosphate solubilizing microorganisms[J]. Life Sci Res, 2019, 23(1):59-64, 86. | |
[12] |
陈慧, 郝慧荣, 熊君, 等. 地黄连作对根际微生物区系及土壤酶活性的影响[J]. 应用生态学报, 2007, 18(12):2755-2759.
pmid: 18333450 |
Chen H, Hao HR, Xiong J, et al. Effects of successive cropping Rehmannia glutinosa on rhizosphere soil microbial flora and enzyme activities[J]. Chin J Appl Ecol, 2007, 18(12):2755-2759.
pmid: 18333450 |
|
[13] | 江曙, 段金廒, 严辉, 等. 当归根际微生物种群结构与生态分布的研究[J]. 中国中药杂志, 2009, 34(12):1483-1488. |
Jiang S, Duan JA, Yan H, et al. Population structure and ecological distribution of rhizospheric microorganisms of Angelica sinensis[J]. China J Chin Mater Med, 2009, 34(12):1483-1488. | |
[14] | 吴伟. 潞党参根际产ACC脱氨酶细菌的多样性调查及高效菌株的接种效应[D]. 临汾:山西师范大学, 2018. |
Wu W. Diversity of ACC deaminase activity bacterium in rhizosphere soil and inoculation effects of Codonopsis pilosula with high efficient strain[D]. Linfen:Shanxi Normal University, 2018. | |
[15] | 吴伟, 张鹏飞, 张桂萍, 等. 连翘根际高效解有机磷细菌的筛选鉴定及促生长特性研究[J]. 西南林业大学学报:自然科学, 2018, 38(3):93-100. |
Wu W, Zhang PF, Zhang GP, et al. Screening, identification and growth promoting characteristics of high efficient organic phosphate-mineralizing bacterium from rhizosphere soils of Forsythia suspensa[J]. J Southwest For Univ:Nat Sci, 2018, 38(3):93-100. | |
[16] | 李亚丹, 郭义东, 刘逆夫, 等. 微生物复合菌群联合降解中药药渣的研究进展[J]. 化学与生物工程, 2015, 32(4):12-14, 25. |
Li YD, Guo YD, Liu NF, et al. Review on the degradation of traditional Chinese medicine slag by composite microbial flora[J]. Chem Bioeng, 2015, 32(4):12-14, 25. | |
[17] | 贺超, 王文全, 侯俊玲. 中药药渣生物有机肥的研究进展[J]. 中草药, 2017, 48(24):5286-5292. |
He C, Wang WQ, Hou JL. Research progress on bio-organic fertilizer from Chinese materia Medica residues[J]. Chin Tradit Herb Drugs, 2017, 48(24):5286-5292. | |
[18] | 鲁耀雄, 高鹏, 崔新卫, 等. 中药渣堆肥过程中氮素转化及相关微生物菌群变化的研究[J]. 农业现代化研究, 2018, 39(3):527-534. |
Lu YX, Gao P, Cui XW, et al. Study on nitrogen transformation and related microbial community changes during the composting process of Chinese medicinal herbal residues[J]. Res Agric Mod, 2018, 39(3):527-534. | |
[19] | 王明欢, 张小娜, 林冰, 等. 中药药渣中固氮菌、解磷菌、解钾菌的筛选[J]. 中成药, 2020, 42(2):531-533. |
Wang MH, Zhang XN, Lin B, et al. Screening of nitrogen-fixing bacteria, phosphorus-releasing bacteria and potassium-releasing bacteria in the residue of traditional Chinese medicine[J]. Chin Tradit Pat Med, 2020, 42(2):531-533. | |
[20] | Holt JG, Krieg NR, Sneath PHA, et al. Bergey’s manual of determinative bacteriology[M]. 9th ed. Baltimore:Williams and Wilkins, 1994. |
[21] |
要雅倩, 成娜娜, 李培根, 等. 解淀粉芽胞杆菌Bacillus amyloliquefaciens T-6的分离鉴定及抗病促生潜力[J]. 生物技术通报, 2020(9):202-210.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0847 |
Yao YQ, Cheng NN, Li PG, et al. Isolation and identification of Bacillus amyloliquefaciens T-6 and its potential of resisting disease and promoting growth[J]. Biotechnol Bull, 2020(9):202-210.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0847 |
|
[22] | 王欢, 韩丽珍. 4株茶树根际促生菌菌株的鉴定及促生作用[J]. 微生物学通报, 2019, 46(3):548-562. |
Wang H, Han LZ. Identification of four plant growth-promoting rhizobacteria isolated from tea rhizosphere[J]. Microbiol China, 2019, 46(3):548-562. | |
[23] | 荣良燕, 姚拓, 赵桂琴, 等. 产铁载体PGPR菌筛选及其对病原菌的拮抗作用[J]. 植物保护, 2011, 37(1):59-64. |
Rong LY, Yao T, Zhao GQ, et al. Screening of siderophore-producing PGPR bacteria and their antagonism against the pathogens[J]. Plant Prot, 2011, 37(1):59-64. | |
[24] | 穆香轶, 张璇, 胡有贞, 等. 库尔勒香梨黑头病拮抗菌的筛选和鉴定[J]. 微生物学通报, 2020, 47(6):1795-1806. |
Mu XY, Zhang X, Hu YZ, et al. Screening and identification of an antagonistic bacterium against blackhead disease of Korla fragrant pear[J]. Microbiol China, 2020, 47(6):1795-1806. | |
[25] | 周莲, 蒋海霞, 金凯明, 等. 高产申嗪霉素和吩嗪-1-酰胺的水稻根际铜绿假单胞菌PA1201分离、鉴定与应用潜力[J]. 微生物学报, 2015, 55(4):401-411. |
Zhou L, Jiang HX, Jin KM, et al. Isolation, identification and characterization of rice rhizobacterium Pseudomonas aeruginosa PA1201 producing high level of biopesticide “Shenqinmycin”and phenazine-1-carboxamide[J]. Acta Microbiol Sin, 2015, 55(4):401-411. | |
[26] |
Shahid I, Han J, Hardie D, et al. Profiling of antimicrobial metabolites of plant growth promoting Pseudomonas spp. isolated from different plant hosts[J]. 3 Biotech, 2021, 11(2):1-14.
doi: 10.1007/s13205-020-02554-1 URL |
[27] | 赵炽娜. 申嗪霉素-缬氨酸耦合物在小麦植株中的传导性研究[D]. 荆州:长江大学, 2020. |
Zhao CN. Study on the systemicity of phenazine-1-carboxylic acid-valine conjugates in wheat plants[D]. Jingzhou:Yangtze University, 2020. | |
[28] |
Hameeda B, Harini G, Rupela OP, et al. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna[J]. Microbiol Res, 2008, 163(2):234-242.
pmid: 16831538 |
[29] | Nuraini Y, Abadi AL Soemarno, et al. Potential of legume and maize composts to stimulate population of nitrogen- fixing bacteria, phosphate-solubilizing bacteria and in dole acetic acid production[J]. Journal of Agriculture and Food Technology, 2011, 1(12):218-226. |
[30] | Atekan, Nuraini Y, Handayanto E, et al. The potential of phosphate solubilizing bacteria isolated from sugarcane wastes for solubilizing phosphate[J]. Journal of Degraded and Mining Lands Management, 2014, 1(4):175-182. |
[31] | 伍善东, 刘清术, 付祖姣, 等. 解有机磷拮抗细菌的筛选及其解磷特性和拮抗作用[J]. 江苏农业学报, 2017, 33(4):843-847. |
Wu SD, Liu QS, Fu ZJ, et al. Screening of the bacteria-degrading organic phosphate and their degradative characteristics and antagonism[J]. Jiangsu J Agric Sci, 2017, 33(4):843-847. | |
[32] | 白变霞, 陈艳彬, 任嘉红. 蜡状芽孢杆菌CLY07菌株的解有机磷特性研究[J]. 西南林业大学学报, 2016(4):75-81. |
Bai BX, Chen YB, Ren JH. Study on Organophosphate-solubilizing characteristics of Bacillus cereus CLY07[J]. J Southwest For Univ, 2016(4):75-81. | |
[33] |
Roychowdhury R, Qaiser TF, Mukherjee P, et al. Isolation and characterization of a Pseudomonas aeruginosa strain PGP for plant growth promotion[J]. Proc Natl Acad Sci India Sect B:Biol Sci, 2019, 89(1):353-360.
doi: 10.1007/s40011-017-0946-9 URL |
[34] |
Linu MS, Asok AK, Thampi M, et al. Plant growth promoting traits of indigenous phosphate solubilizing Pseudomonas aeruginosa isolates from chilli(Capsicumannuum L.)rhizosphere[J]. Commun Soil Sci Plant Anal, 2019, 50(4):444-457.
doi: 10.1080/00103624.2019.1566469 URL |
[35] | 谯天敏, 朱天辉, 李姝江. 铜绿假单胞菌ZB27的定殖能力及对杂交竹梢枯病的防控作用[J]. 植物保护学报, 2011, 38(2):133-138. |
Qiao TM, Zhu TH, Li SJ. Colonization of Pseudomonas aeruginosa ZB27 and its control effect on hybrid bamboo blight[J]. Acta Phytophylacica Sin, 2011, 38(2):133-138. | |
[36] | 谯天敏, 张静, 赵芳, 等. 铜绿假单胞菌发酵条件优化及抗菌物质研究[J]. 南京林业大学学报:自然科学版, 2014, 38(5):45-50. |
Qiao TM, Zhang J, Zhao F, et al. Study on optimization of fermentation conditions of Pseudomonas aeruginosa and its antibacterial substances[J]. J Nanjing For Univ:Nat Sci Ed, 2014, 38(5):45-50. | |
[37] | 张亚, 蒋程, 易龙, 等. 铜绿假单胞菌次生代谢产物的研究进展[J]. 化学与生物工程, 2015, 32(1):8-11. |
Zhang Y, Jiang C, Yi L, et al. Research progress of secondary metabolites produced by Pseudomonas aeruginosa[J]. Chem Bioeng, 2015, 32(1):8-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||