Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (7): 119-127.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1184
Previous Articles Next Articles
ZHOU Lin1,2(), LIANG Xuan-ming1, ZHAO Lei1,2()
Received:
2021-09-14
Online:
2022-07-26
Published:
2022-08-09
Contact:
ZHAO Lei
E-mail:zhoulin@tib.cas.cn;zhaol@tib.cas.cn
ZHOU Lin, LIANG Xuan-ming, ZHAO Lei. Biosynthesis of Natural Carotenoids:Progress and Perspective[J]. Biotechnology Bulletin, 2022, 38(7): 119-127.
类胡萝卜素 Carotenoids | 生物学功能 Biological function |
---|---|
虾青素 Astaxanthin | 抗氧化、抗炎、抗癌、预防心血管疾病 |
β-胡萝卜素 β-carotene | 抗氧化、预防夜盲症、抗肝硬化 |
叶黄素 Lutein | 预防白内障和老年性黄斑变性、抗氧化、抗肿瘤 |
番茄红素 Lycopene | 抗癌、预防心血管疾病、防辐射、抗氧化 |
Table 1 Biological functions of main carotenoids
类胡萝卜素 Carotenoids | 生物学功能 Biological function |
---|---|
虾青素 Astaxanthin | 抗氧化、抗炎、抗癌、预防心血管疾病 |
β-胡萝卜素 β-carotene | 抗氧化、预防夜盲症、抗肝硬化 |
叶黄素 Lutein | 预防白内障和老年性黄斑变性、抗氧化、抗肿瘤 |
番茄红素 Lycopene | 抗癌、预防心血管疾病、防辐射、抗氧化 |
名称 Name | 编号 No. | 简写 Abbreviation | 编码基因 Encoding gene |
---|---|---|---|
八氢番茄红素合成酶 Phytoene synthase | 2.5.1.32 | PSY | AtPSY |
八氢番茄红素脱氢酶 Phytoene desaturase | 1.3.5.5 | PDS | AtPDS3 |
ξ-胡萝卜素脱氢酶 ζ-carotene desaturase | 1.3.5.6 | ZDS | AtZDS |
番茄红素ε-环化酶 Lycopene ε-cyclase | 5.5.1.18 | ε-LCY(LCYe) | AtLUT2 |
番茄红素β-环化酶 Lycopene-β-cyclase | 5.5.1.19 | β-LCY(LCYb) | AtLYC |
类胡萝卜素ε-羟化酶 Carotenoid ε-hydroxylase | 1.14.14.158 | LUT1 | AtLUT1 |
β-胡萝卜素3-羟化酶 β-carotene 3-hydroxylase | 1.14.15.24 | CrtZ | Atβ-OHASE_1 Atβ-OHASE_2 |
β-环羟化酶 β-cyclohydroxylase | 1.14 | LUT5 | AtCYP97A3 |
玉米黄素环氧化酶 Zeathanxin epoxidase | 1.14.15.21 | ZEP | AtABA1 |
堇菜黄质脱环氧化酶 Violaxanthin deepoxidase | 1.23.5.1 | VDE | NPQ1 |
Table 2 Enzymes and encoding genes involved in caroten-oid biosynthesis
名称 Name | 编号 No. | 简写 Abbreviation | 编码基因 Encoding gene |
---|---|---|---|
八氢番茄红素合成酶 Phytoene synthase | 2.5.1.32 | PSY | AtPSY |
八氢番茄红素脱氢酶 Phytoene desaturase | 1.3.5.5 | PDS | AtPDS3 |
ξ-胡萝卜素脱氢酶 ζ-carotene desaturase | 1.3.5.6 | ZDS | AtZDS |
番茄红素ε-环化酶 Lycopene ε-cyclase | 5.5.1.18 | ε-LCY(LCYe) | AtLUT2 |
番茄红素β-环化酶 Lycopene-β-cyclase | 5.5.1.19 | β-LCY(LCYb) | AtLYC |
类胡萝卜素ε-羟化酶 Carotenoid ε-hydroxylase | 1.14.14.158 | LUT1 | AtLUT1 |
β-胡萝卜素3-羟化酶 β-carotene 3-hydroxylase | 1.14.15.24 | CrtZ | Atβ-OHASE_1 Atβ-OHASE_2 |
β-环羟化酶 β-cyclohydroxylase | 1.14 | LUT5 | AtCYP97A3 |
玉米黄素环氧化酶 Zeathanxin epoxidase | 1.14.15.21 | ZEP | AtABA1 |
堇菜黄质脱环氧化酶 Violaxanthin deepoxidase | 1.23.5.1 | VDE | NPQ1 |
底盘细胞Chassis cells | 类胡萝卜素Carotenoid | 工程手段 Engineering measures |
---|---|---|
大肠杆菌 E. coli | 番茄红素Lycopene | 过表达戊二酸脱氢酶SucAB、琥珀酸脱氢酶SdhABCD 和转醛酶B TalB |
β-胡萝卜素β-carotene | 对合成路径模块进行工程化改造;过表达α-酮戊二酸脱氢酶SucAB 和琥珀酸脱氢酶SdhABCD;过表达转醛酶TalB,增强磷酸戊糖途径 | |
玉米黄质Zeaxanthin | 应用可调控基因间序列平衡异MVA 路径蛋白表达;使用IPP/FPP 响应启动子动态调控异源MVA 路径基因,减少有毒中间代谢物积累 | |
虾青素Astaxanthin | 组合筛选路径基因启动子,促进番茄红素向β-胡萝卜素转化;OmpF 和TrxA 标签分别与截短蛋白N 端或C 端融合,实现CrtW 的稳定表达和质膜定位 | |
酿酒酵母 S. cerevisiae | 番茄红素Lycopene | CrtB 序列的筛选;CrtYB 与CrtE 的定向进化;调节Crt 编码基因拷贝数;构建非营养缺陷二倍体细胞 |
β-胡萝卜β-carotene | 以GAL 系统和HXT1 启动子时序调控胡萝卜素和竞争性鲨烯的合成 | |
虾青素Astaxanthin | CrtZ 和CrtW 协同定向进化;温敏调控系统控制关键基因表达 | |
耶氏解脂酵母 Y. lipolytica | 番茄红素Lycopene | 引入异戊烯醇同化路径增强前体IPP/DMAPP 供给;增强脂质积累;增加IDI 拷贝 |
β-胡萝卜β-carotene | 选择高度积累脂质的底盘;路径基因启动子的组合适配;发酵条件优化 | |
虾青素Astaxanthin | 下调鲨烯合酶的表达;同时表达不同来源的CrtE;筛选CrtZ/CrtW 来源,调节表达量 |
Table 3 Construction examples of a synthetic carotenoid cell factory
底盘细胞Chassis cells | 类胡萝卜素Carotenoid | 工程手段 Engineering measures |
---|---|---|
大肠杆菌 E. coli | 番茄红素Lycopene | 过表达戊二酸脱氢酶SucAB、琥珀酸脱氢酶SdhABCD 和转醛酶B TalB |
β-胡萝卜素β-carotene | 对合成路径模块进行工程化改造;过表达α-酮戊二酸脱氢酶SucAB 和琥珀酸脱氢酶SdhABCD;过表达转醛酶TalB,增强磷酸戊糖途径 | |
玉米黄质Zeaxanthin | 应用可调控基因间序列平衡异MVA 路径蛋白表达;使用IPP/FPP 响应启动子动态调控异源MVA 路径基因,减少有毒中间代谢物积累 | |
虾青素Astaxanthin | 组合筛选路径基因启动子,促进番茄红素向β-胡萝卜素转化;OmpF 和TrxA 标签分别与截短蛋白N 端或C 端融合,实现CrtW 的稳定表达和质膜定位 | |
酿酒酵母 S. cerevisiae | 番茄红素Lycopene | CrtB 序列的筛选;CrtYB 与CrtE 的定向进化;调节Crt 编码基因拷贝数;构建非营养缺陷二倍体细胞 |
β-胡萝卜β-carotene | 以GAL 系统和HXT1 启动子时序调控胡萝卜素和竞争性鲨烯的合成 | |
虾青素Astaxanthin | CrtZ 和CrtW 协同定向进化;温敏调控系统控制关键基因表达 | |
耶氏解脂酵母 Y. lipolytica | 番茄红素Lycopene | 引入异戊烯醇同化路径增强前体IPP/DMAPP 供给;增强脂质积累;增加IDI 拷贝 |
β-胡萝卜β-carotene | 选择高度积累脂质的底盘;路径基因启动子的组合适配;发酵条件优化 | |
虾青素Astaxanthin | 下调鲨烯合酶的表达;同时表达不同来源的CrtE;筛选CrtZ/CrtW 来源,调节表达量 |
[1] |
Borowitzka MA. High-value products from microalgae—their development and commercialisation[J]. J Appl Phycol, 2013, 25(3):743-756.
doi: 10.1007/s10811-013-9983-9 URL |
[2] |
Han SI, Chang SH, Lee C, et al. Astaxanthin biosynthesis promotion with pH shock in the green microalga, Haematococcus lacustris[J]. Bioresour Technol, 2020, 314:123725.
doi: 10.1016/j.biortech.2020.123725 URL |
[3] |
Ma T, Shi B, Ye Z, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene[J]. Metab Eng, 2019, 52:134-142.
doi: 10.1016/j.ymben.2018.11.009 URL |
[4] |
López J, Cataldo VF, Peña M, et al. Build your bioprocess on a solid strain—β-carotene production in recombinant Saccharomyces cerevisiae[J]. Front Bioeng Biotechnol, 2019, 7:171.
doi: 10.3389/fbioe.2019.00171 URL |
[5] |
Sasso S, Pohnert G, Lohr M, et al. Microalgae in the postgenomic era:a blooming reservoir for new natural products[J]. FEMS Microbiol Rev, 2012, 36(4):761-785.
doi: 10.1111/j.1574-6976.2011.00304.x URL |
[6] |
Ahrazem O, Gómez-Gómez L, Rodrigo M, et al. Carotenoid cleavage oxygenases from microbes and photosynthetic organisms:features and functions[J]. Int J Mol Sci, 2016, 17(11):1781.
doi: 10.3390/ijms17111781 URL |
[7] |
Fraser PD, Bramley PM. The biosynthesis and nutritional uses of carotenoids[J]. Prog Lipid Res, 2004, 43(3):228-265.
pmid: 15003396 |
[8] |
Eggersdorfer M, Wyss A. Carotenoids in human nutrition and health[J]. Arch Biochem Biophys, 2018, 652:18-26.
doi: S0003-9861(18)30165-6 pmid: 29885291 |
[9] |
Pulz O, Gross W. Valuable products from biotechnology of microalgae[J]. Appl Microbiol Biotechnol, 2004, 65(6):635-648.
doi: 10.1007/s00253-004-1647-x URL |
[10] |
Flachowsky G, Aulrich K, Böhme H, et al. Studies on feeds from genetically modified plants(GMP)-Contributions to nutritional and safety assessment[J]. Animal Feed Sci Technol, 2007, 133(1/2):2-30.
doi: 10.1016/j.anifeedsci.2006.08.002 URL |
[11] |
Katsuda T, Lababpour A, Shimahara K, et al. Astaxanthin production by Haematococcus pluvialis under illumination with LEDs[J]. Enzyme Microb Technol, 2004, 35(1):81-86.
doi: 10.1016/j.enzmictec.2004.03.016 URL |
[12] | 张磊. β-胡萝卜素高产菌三孢布拉霉的选育及发酵工艺研究[D]. 武汉: 华中科技大学, 2017. |
Zhang L. Breeding of high-yielding β-carotene strain Blakeslea trispora and optimization of its fementation technique[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
[13] |
Mata-Gómez LC, Montañez JC, Méndez-Zavala A, et al. Biotechnological production of carotenoids by yeasts:an overview[J]. Microb Cell Fact, 2014, 13:12.
doi: 10.1186/1475-2859-13-12 pmid: 24443802 |
[14] | Lado J, Zacarías L, Rodrigo MJ. Regulation of carotenoid biosynthesis during fruit development[J]. Subcell Biochem, 2016, 79:161-198. |
[15] |
Mitri K, Shegokar R, Gohla S, et al. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery[J]. Int J Pharm, 2011, 420(1):141-146.
doi: 10.1016/j.ijpharm.2011.08.026 URL |
[16] | Gong M. Investigation of lutein production and recovery from Chlorella vulgaris using phototrophic cultivation[D]. London: The University of Western Ontario, 2017. |
[17] | Vasudeva V, Tenkanidiyoor YS, Peter AJ, et al. Radioprotective efficacy of lutein in ameliorating electron beam radiation-induced oxidative injury in Swiss albino mice[J]. Iran J Med Sci, 2018, 43(1):41-51. |
[18] | 张涛, 邓思, 陈艳红, 等. 虾青素和β-胡萝卜素的抗氧化活性及其协同作用研究[J]. 食品与发酵工业, 2021, 47(9):8-15. |
Zhang T, Deng S, Chen YH, et al. Antioxidant activity and synergistic effect of astaxanthin and β-carotene[J]. Food Ferment Ind, 2021, 47(9):8-15. | |
[19] | 任丹丹, 张海丽, 王惜童, 等. 叶黄素与玉米黄质协同抗氧化活性的研究[J]. 食品工业科技, 2017, 38(17):296-299, 304. |
Ren DD, Zhang HL, Wang XT, et al. Study on the synergistic antioxidant activity of lutein and Zeaxanthin[J]. Sci Technol Food Ind, 2017, 38(17):296-299, 304. | |
[20] |
Fernández-Sevilla JM, Acién Fernández FG, Molina Grima E. Biotechnological production of lutein and its applications[J]. Appl Microbiol Biotechnol, 2010, 86(1):27-40.
doi: 10.1007/s00253-009-2420-y pmid: 20091305 |
[21] |
Ozawa Y, Sasaki M, Takahashi N, et al. Neuroprotective effects of lutein in the Retina[J]. Curr Pharm Des, 2012, 18(1):51-56.
doi: 10.2174/138161212798919101 URL |
[22] |
Hwang JS, Han SG, Lee CH, et al. Lutein suppresses hyperglycemia-induced premature senescence of retinal pigment epithelial cells by upregulating SIRT1[J]. J Food Biochem, 2018, 42(3):e12495. DOI: 10.1111/jfbc.12495.
doi: 10.1111/jfbc.12495 |
[23] |
Sathasivam R, Ki JS. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries[J]. Mar Drugs, 2018, 16(1):26.
doi: 10.3390/md16010026 URL |
[24] |
Kim KN, Heo SJ, Yoon WJ, et al. Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-κB and MAPKs in lipopolysaccharide-induced RAW 264. 7 macrophages[J]. Eur J Pharmacol, 2010, 649(1/2/3):369-375.
doi: 10.1016/j.ejphar.2010.09.032 URL |
[25] |
Kotake-Nara E, Terasaki M, Nagao A. Characterization of apoptosis induced by fucoxanthin in human promyelocytic leukemia cells[J]. Biosci Biotechnol Biochem, 2005, 69(1):224-227.
doi: 10.1271/bbb.69.224 URL |
[26] |
Satomi Y. Antitumor and cancer-preventative function of fucoxanthin:a marine carotenoid[J]. Anticancer Res, 2017, 37(4):1557-1562.
doi: 10.21873/anticanres.11484 URL |
[27] |
Gong M, Bassi A. Carotenoids from microalgae:a review of recent developments[J]. Biotechnol Adv, 2016, 34(8):1396-1412.
doi: 10.1016/j.biotechadv.2016.10.005 URL |
[28] | Britton G, Liaaen-Jensen S, Pfander H. Carotenoids[M]. Basel: Birkhäuser Basel, 2004. |
[29] | 王春菲, 贾倩云, 贾真真, 等. 番茄红素ε-环化酶调节烟草抗旱性的研究[J]. 河南大学学报:自然科学版, 2019, 49(4):444-449. |
Wang CF, Jia QY, Jia ZZ, et al. The study of lycopene ε-cyclase in drought adaption in tobacco[J]. J Henan Univ:Nat Sci, 2019, 49(4):444-449. | |
[30] |
Jing YW, Guo F, Zhang SJ, et al. Recent advances on biological synthesis of lycopene by using industrial yeast[J]. Ind Eng Chem Res, 2021, 60(9):3485-3494.
doi: 10.1021/acs.iecr.0c05228 URL |
[31] |
Perozeni F, Cazzaniga S, Baier T, et al. Turning a green alga red:engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii[J]. bioRxiv, 2019. DOI: 10.1101/535989.
doi: 10.1101/535989 |
[32] | Porter J W, Lincoln RE. Lycopersicon selections containing a high content of carotenes and colorless polyenes;the mechanism of carotene biosynthesis[J]. Arch Biochem. 1950, 27(2):390-403. |
[33] |
Cárdenas-Conejo Y, Carballo-Uicab V, Lieberman M, et al. De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis[J]. BMC Genomics, 2015, 16:877.
doi: 10.1186/s12864-015-2065-4 pmid: 26511010 |
[34] | Paniagua-Michel J, Olmos-Soto J, Ruiz MA. Pathways of carotenoid biosynthesis in bacteria and microalgae[M]// Barredo JL. Microbial Carotenoids from Bacteria and Microalgae. New York: Humana Press, 2012, 1-12. |
[35] |
You MK, Lee YJ, Kim JK, et al. The organ-specific differential roles of rice DXS and DXR, the first two enzymes of the MEP pathway, in carotenoid metabolism in Oryza sativa leaves and seeds[J]. BMC Plant Biol, 2020, 20(1):167.
doi: 10.1186/s12870-020-02357-9 pmid: 32293285 |
[36] |
Shewmaker CK, Sheehy JA, Daley M, et al. Seed-specific overexpression of phytoene synthase:increase in carotenoids and other metabolic effects[J]. Plant J, 1999, 20(4):401-412.
doi: 10.1046/j.1365-313x.1999.00611.x URL |
[37] | 宋小艳. 马铃薯β-胡萝卜素合成基因StLCYb的克隆与功能分析[D]. 南京: 南京农业大学, 2015. |
Song XY. Cloning and functional analysis of β-carotene synthesis genes stlcyb in potato[D]. Nanjing: Nanjing Agricultural University, 2015. | |
[38] | 王玉萍, 刘庆昌, 翟红. 植物类胡萝卜素生物合成相关基因的表达调控及其在植物基因工程中的应用[J]. 分子植物育种, 2006, 4(1):103-110. |
Wang YP, Liu QC, Zhai H. Expression and regulation of genes related to plant carotenoid biosynthesis and their application in plant gene engineering[J]. Mol Plant Breed, 2006, 4(1):103-110. | |
[39] |
Gao HJ, Xu J, Liu X, et al. Light effect on carotenoids production and expression of carotenogenesis genes in Citrus callus of four genotypes[J]. Acta Physiol Plant, 2011, 33(6):2485-2492.
doi: 10.1007/s11738-011-0793-x URL |
[40] |
Qin G, Gu H, Ma L, et al. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis[J]. Cell Res, 2007, 17(5):471-482.
doi: 10.1038/cr.2007.40 URL |
[41] |
García-Plazaola JI, Matsubara S, Osmond CB. The lutein epoxide cycle in higher plants:its relationships to other xanthophyll cycles and possible functions[J]. Funct Plant Biol, 2007, 34(9):759-773.
doi: 10.1071/FP07095 pmid: 32689404 |
[42] | Yoshida R, Yoshimura T, Hemmi H. Reconstruction of the “archaeal” mevalonate pathway from the methanogenic archaeon Methanosarcina mazei in Escherichia coli cells[J]. Appl Environ Microbiol, 2020, 86(6):e02889-19. |
[43] | 王颖, 曲俊泽, 梁楠, 等. 合成类胡萝卜素细胞工厂的快速构建和定向进化[J]. 化工进展, 2021, 40(3):1187-1201. |
Wang Y, Qu JZ, Liang N, et al. Rapid construction and directed evolution of cell factories for carotenoid biosynthesis[J]. Chem Ind Eng Prog, 2021, 40(3):1187-1201. | |
[44] |
Goto S, Kogure K, Abe K, et al. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin[J]. Biochim Biophys Acta, 2001, 1512(2):251-258.
pmid: 11406102 |
[45] |
Verwaal R, Jiang Y, Wang J, et al. Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response[J]. Yeast, 2010, 27(12):983-998.
doi: 10.1002/yea.1807 URL |
[46] |
Zhou PP, Xie WP, Yao Z, et al. Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch[J]. Biotechnol Bioeng, 2018, 115(5):1321-1330.
doi: 10.1002/bit.26544 URL |
[47] |
Wu T, Ye L, Zhao D, et al. Engineering membrane morphology and manipulating synthesis for increased lycopene accumulation in Escherichia coli cell factories[J]. 3 Biotech, 2018, 8(6):269.
doi: 10.1007/s13205-018-1298-8 URL |
[48] | Chen Y, Wang Y, Liu M, et al. Primary and secondary metabolic effects of a key gene deletion(Δ YPL062W)in metabolically engineered terpenoid-producing Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2019, 85(7):e01990-18. |
[49] | 杨永富, 耿碧男, 宋皓月, 等. 合成生物学时代基于非模式细菌的工业底盘细胞研究现状与展望[J]. 生物工程学报, 2021, 37(3):874-910. |
Yang YF, Geng BN, Song HY, et al. Progress and perspective on development of non-model industrial bacteria as chassis cells for biochemical production in the synthetic biology era[J]. Chin J Biotechnol, 2021, 37(3):874-910. | |
[50] | 郑阳霞, 杨婉身, 季静, 等. 类胡萝卜素生物合成相关基因的克隆及其遗传工程的研究进展[J]. 细胞生物学杂志, 2006, 28(3):442-446. |
Zheng YX, Yang WS, Ji J, et al. Progress in gene cloning and genetic manipulation of carotenoid biosynthesis[J]. Chin J Cell Biol, 2006, 28(3):442-446. | |
[51] |
Zhu QL, Zeng DC, Yu SZ, et al. From golden rice to aSTARice:bioengineering astaxanthin biosynthesis in rice endosperm[J]. Mol Plant, 2018, 11(12):1440-1448.
doi: 10.1016/j.molp.2018.09.007 URL |
[52] |
Couso I, Cordero BF, et al. Efficient heterologous transformation of Chlamydomonas reinhardtii npq2 mutant with the Zeaxanthin epoxidase gene isolated and characterized from Chlorellazofingiensis[J]. Mar Drugs, 2012, 10(9):1955-1976.
doi: 10.3390/md10091955 URL |
[53] | 武陶, 张柏林, 毕昌昊. 细胞膜合成途径模块化调控与形态改造提高大肠杆菌β-胡萝卜素的积累与产量[J]. 生物工程学报, 2018, 34(5):703-711. |
Wu T, Zhang Z, Bi CH. Improving β-carotene production in Escherichia coli by modularized regulation of the membrane synthetic pathway and morphology engineering[J]. Chin J Biotechnol, 2018, 34(5):703-711. | |
[54] |
Liang N, Chen C, Wang Y, et al. Exploring catalysis specificity of phytoene dehydrogenase CrtI in carotenoid synthesis[J]. ACS Synth Biol, 2020, 9(7):1753-1762.
doi: 10.1021/acssynbio.0c00128 pmid: 32579850 |
[55] |
Lu Q, Bu YF, Liu JZ. Metabolic engineering of Escherichia coli for producing astaxanthin as the predominant carotenoid[J]. Mar Drugs, 2017, 15(10):296.
doi: 10.3390/md15100296 URL |
[56] |
Henke N, Heider S, et al. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum[J]. Mar Drugs, 2016, 14(7):124.
doi: 10.3390/md14070124 URL |
[57] |
Zhao J, Li QY, Sun T, et al. Engineering central metabolic modules of Escherichia coli for improving β-carotene production[J]. Metab Eng, 2013, 17:42-50.
doi: 10.1016/j.ymben.2013.02.002 URL |
[58] |
Coussement P, Bauwens D, et al. Direct combinatorial pathway optimization[J]. ACS Synth Biol, 2017, 6(2):224-232.
doi: 10.1021/acssynbio.6b00122 pmid: 27672702 |
[59] |
Morrone D, Lowry L, et al. Increasing diterpene yield with a modular metabolic engineering system in E. coli:comparison of MEV and MEP isoprenoid precursor pathway engineering[J]. Appl Microbiol Biotechnol, 2010, 85(6):1893-1906.
doi: 10.1007/s00253-009-2219-x pmid: 19777230 |
[1] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[2] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[3] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[4] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[5] | ZHANG Zhi-xia, LI Tian-pei, ZENG Hong, ZHU Xi-xian, YANG Tian-xiong, MA Si-nan, HUANG Lei. Genome Sequencing and Bioinformatics Analysis of Gelidibacter sp. PG-2 [J]. Biotechnology Bulletin, 2023, 39(3): 290-300. |
[6] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[7] | REN Li, QIAO Shu-ting, GE Chen-hui, WEI Zi-tong, XU Chen-xi. Identification and Expression Analysis of Spinach PSY Gene Family [J]. Biotechnology Bulletin, 2023, 39(12): 169-178. |
[8] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[9] | GUO Xiao-zhen, ZHANG Xue-fu. Analysis of the Development Trend in the Field of Plant Synthetic Biology [J]. Biotechnology Bulletin, 2022, 38(2): 289-296. |
[10] | KONG Qian, HUANG Wen-jie, WU Shao-wen, LI Kun, ZHANG Ming-wei, YAN Shi-juan. Establishment of HPLC Method for Simultaneous Determination of Ten Carotenoids [J]. Biotechnology Bulletin, 2022, 38(11): 80-89. |
[11] | ZHAO Yu-xue, WANG Yun, YU Lu-yao, LIU Jing-jing, SI Jin-ping, ZHANG Xin-feng, ZHANG Lei. Structure and Application of C-glycosyltransferases in Plants [J]. Biotechnology Bulletin, 2022, 38(10): 18-28. |
[12] | YE Min, GAO Jiao-qi, ZHOU Yong-jin. Engineering Non-conventional Yeast Cell Factory for the Biosynthesis of Natural Products [J]. Biotechnology Bulletin, 2021, 37(8): 12-24. |
[13] | ZHANG Chan, YAO Guang-long, ZHANG Jun-feng, YU Jing, YANG Dong-mei, CHEN Ping, WU You-gen. Research Progress on Patchoulol Molecular Regulation and Synthetic Biology in Pogostemon cablin [J]. Biotechnology Bulletin, 2021, 37(8): 55-64. |
[14] | YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang. Dynamic Control:An Efficient Strategy for Metabolically Engineering Microbial Cell Factories [J]. Biotechnology Bulletin, 2020, 36(6): 1-12. |
[15] | CHANG Han-wen, ZHENG Xin-ling, LUO Jian-mei, WANG Min, SHEN Yan-bing. Tolerance Elements and Their Application Progress on the Construction of Highly-efficient Microbial Cell Factory [J]. Biotechnology Bulletin, 2020, 36(6): 13-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||