Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (6): 143-151.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0064
Previous Articles Next Articles
HUANG Qiu1,2,3(), LIU Jing1,2,3, QIN Fan-xin1,2,3(), LUO Bang-lin4, LUO Lin1,2,3, LI Wan-yu1,2,3, XU An-qi1,2,3
Received:
2024-01-16
Online:
2024-06-26
Published:
2024-06-24
Contact:
QIN Fan-xin
E-mail:3349431037@qq.com;qinfanxin@126.com
HUANG Qiu, LIU Jing, QIN Fan-xin, LUO Bang-lin, LUO Lin, LI Wan-yu, XU An-qi. Barrier Effect of Zinc and Selenium Combined Application on Mercury Accumulation in Rice[J]. Biotechnology Bulletin, 2024, 40(6): 143-151.
pH | 有机质Organic matter /(g·kg-1) | 碱解氮Alkaline hydrolyzable nitrogen /(mg·kg-1) | 有效磷Available phosphorus /(mg·kg-1) | 速效钾Available potassium /(mg·kg-1) | 全汞Total mercury / (mg·kg-1) | 有效汞Available mercury/ (μg·kg-1) | 全锌Total zinc/ (mg·kg-1) | 有效锌Ava- ilable zinc / (mg·kg-1) | 全硒Total selenium /(mg·kg-1) | 有效硒Available selenium /(mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
6.28 | 42.26 | 231.00 | 15.94 | 69.00 | 22.38 | 7.29 | 109.05 | 2.91 | 2.53 | 0.44 |
Table 1 Physical and chemical properties of experimental soil
pH | 有机质Organic matter /(g·kg-1) | 碱解氮Alkaline hydrolyzable nitrogen /(mg·kg-1) | 有效磷Available phosphorus /(mg·kg-1) | 速效钾Available potassium /(mg·kg-1) | 全汞Total mercury / (mg·kg-1) | 有效汞Available mercury/ (μg·kg-1) | 全锌Total zinc/ (mg·kg-1) | 有效锌Ava- ilable zinc / (mg·kg-1) | 全硒Total selenium /(mg·kg-1) | 有效硒Available selenium /(mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
6.28 | 42.26 | 231.00 | 15.94 | 69.00 | 22.38 | 7.29 | 109.05 | 2.91 | 2.53 | 0.44 |
Fig. 1 Effects of different treatments of Zn and Se on soil pH(A)and available Hg, available Zn, and available Se(B) CK: No zinc or selenium added; Z1 and Z2 : single application of low and high zinc(10 mg/kg and 100 mg/kg), respectively; S1 and S2: single application of low and high selenium(2.5 mg/kg and 10 mg/kg), respectively; Z1+S1, Z1+S2, Z2+S1, and Z2+S2: combined application of low high zinc, and low high selenium, respectively. Different lowercase letters indicate significant differences at the P<0.05 level between different treatments, the same below
处理Treatment | 株高Plant height/cm | 分蘖数Number of tillers | 穗数 Spike | 产量Yield /(g·plant-1) |
---|---|---|---|---|
CK | 93.43±2.61ab | 6±0.35a | 5±0.54b | 13.61±0.03ab |
Z1 | 106.47±2.2d | 6±0.67a | 5±0.25b | 15.43±0.69cde |
Z2 | 101.97±0.75cd | 6±0.25a | 4±0.51a | 14.33±0.5bc |
S1 | 102.2±2.79cd | 6±0.1a | 5±0.19b | 15.02±0.65bcd |
S2 | 94.13±2ab | 6±0.51a | 5±0.19b | 14.94±1.06bcd |
Z1+S1 | 97.3±4.35bc | 6±0.44a | 6±0.19c | 16.93±0.55e |
Z1+S2 | 90.97±2.89a | 6±0.19a | 5±0.1b | 12.12±1.12a |
Z2+S1 | 99.63±0.8c | 7±0.6b | 5±0.33b | 16.07±1.28de |
Z2+S2 | 91.1±2.48a | 7±0.17b | 6±0.25c | 13.58±1.01ab |
Table 2 Biomass of rice treated with Zn and Se
处理Treatment | 株高Plant height/cm | 分蘖数Number of tillers | 穗数 Spike | 产量Yield /(g·plant-1) |
---|---|---|---|---|
CK | 93.43±2.61ab | 6±0.35a | 5±0.54b | 13.61±0.03ab |
Z1 | 106.47±2.2d | 6±0.67a | 5±0.25b | 15.43±0.69cde |
Z2 | 101.97±0.75cd | 6±0.25a | 4±0.51a | 14.33±0.5bc |
S1 | 102.2±2.79cd | 6±0.1a | 5±0.19b | 15.02±0.65bcd |
S2 | 94.13±2ab | 6±0.51a | 5±0.19b | 14.94±1.06bcd |
Z1+S1 | 97.3±4.35bc | 6±0.44a | 6±0.19c | 16.93±0.55e |
Z1+S2 | 90.97±2.89a | 6±0.19a | 5±0.1b | 12.12±1.12a |
Z2+S1 | 99.63±0.8c | 7±0.6b | 5±0.33b | 16.07±1.28de |
Z2+S2 | 91.1±2.48a | 7±0.17b | 6±0.25c | 13.58±1.01ab |
Fig. 4 Enrichment coefficients of mercury in rice husks(A), stems(B), grains(C), leaves(D)and rice roots(E) The total proportion of pie charts in A, B, D, and E is 6.5%, while C is 1%
Fig. 5 Heat map of correlation between various influencing factors of high and low concentrations of zinc and selenium after single and combined application * and * * respectively indicate significant correlation at the P<0.05 level and extremely significant correlation at the P<0.01 level
[1] | 康天恺. 不同锌肥及施用方法对水稻籽粒产量和锌有效性的影响[D]. 武汉: 华中农业大学, 2022. |
Kang TK. Effects of different zinc fertilizer and application methods on grain yield and zinc bioavailability of rice[D]. Wuhan: Huazhong Agricultural University, 2022. | |
[2] | 宋佳媚. 低温胁迫下锌对水稻分蘖生长及恢复的影响[D]. 哈尔滨: 东北农业大学, 2020. |
Song JM. Effects of zinc on rice tiller growth and recovery under low temperature stress[D]. Harbin: Northeast Agricultural University, 2020. | |
[3] | 袁宇飞. Zn、Se对Hg胁迫下小麦种子萌发及幼苗生长的影响[D]. 泰安: 山东农业大学, 2011. |
Yuan YF. Effects of Zn on seed germination and seedling growth of wheat under Hg stress[D]. Tai'an: Shandong Agricultural University, 2011. | |
[4] | Liu T, Man Y, Li P, et al. A hydroponic study on effect of zinc against mercury uptake by Triticale: kinetic process and accumulation[J]. Bull Environ Contam Toxicol, 2022, 108(2): 359-365. |
[5] | Cong WX, Li N, Miao YL, et al. DNA hypomethylation-associated transcriptional rewiring enables resistance to heavy metal mercury(Hg)stress in rice[J]. J Hazard Mater, 2024, 461: 132649. |
[6] | Hossain KFB, Hosokawa T, Saito T, et al. Zinc-pretreatment triggers glutathione and Nrf2-mediated protection against inorganic mercury-induced cytotoxicity and intrinsic apoptosis in PC12 cells[J]. Ecotoxicol Environ Saf, 2021, 207: 111320. |
[7] | Moulick D, Santra SC, Ghosh D. Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain[J]. Ecotoxicol Environ Saf, 2018, 152: 67-77. |
[8] | 张璐. 土壤—水稻系统硒汞交互作用机制研究[D]. 重庆: 西南大学, 2016. |
Zhang L. Interaction mechanism of selenium and mercury in soil-rice system[D]. Chongqing: Southwest University, 2016. | |
[9] | 高阿祥, 周鑫斌, 张城铭. 硒(IV)预处理下根表铁膜对水稻幼苗吸收和转运汞的影响[J]. 土壤学报, 2017, 54(4): 989-998. |
Gao AX, Zhou XB, Zhang CM. Effect of iron plaque on root on uptake and translocation of mercury in rice seedlings treated with selenium(IV)[J]. Acta Pedol Sin, 2017, 54(4): 989-998. | |
[10] | 徐灿灿, 孙达, 王根荣, 等. 富里酸结合叶面硒肥用于油菜修复低汞污染农田土壤[J]. 环境工程, 2019, 37(7): 199-203. |
Xu CC, Sun D, Wang GR, et al. Accumulation of mercury from slightly contaminated farmland soil by rape with addition of fulvic acid and foliar spraying with selenium[J]. Environ Eng, 2019, 37(7): 199-203. | |
[11] | Manivannan N, Subirana MA, Boada R, et al. Mercury speciation in selenium enriched wheat plants hydroponically exposed to mercury pollution[J]. Sci Rep, 2023, 13(1): 21132. |
[12] | Wang YJ, Dang F, Zhao JT, et al. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil[J]. Environ Pollut, 2016, 213: 232-239. |
[13] |
Wang YJ, Dang F, Evans RD, et al. Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil[J]. Sci Rep, 2016, 6: 19477.
doi: 10.1038/srep19477 pmid: 26778218 |
[14] | Gao M, Zhou J, Liu HL, et al. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]. Sci Total Environ, 2018, 631-632: 1100-1108. |
[15] | 呼艳姣. 汞胁迫对水稻毒性临界值研究[D]. 贵阳: 贵州师范大学, 2023. |
Hu YJ. Study on the critical values of toxicity of mercury stress to rice[D]. Guiyang: Guizhou Normal University, 2023. | |
[16] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
Bao SD. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. | |
[17] | 黄玉芬, 王果, 刘坤, 等. 酸性土壤有效汞提取方法研究[J]. 农业环境科学学报, 2012, 31(8): 1566-1570. |
Huang YF, Wang G, Liu K, et al. Extraction method for available mercury in acid soils[J]. J Agro Environ Sci, 2012, 31(8): 1566-1570. | |
[18] | Li YY, Li H, Li YF, et al. Evidence for molecular antagonistic mechanism between mercury and selenium in rice(Oryza sativa L.): a combined study using 1, 2-dimensional electrophoresis and SR-XRF techniques[J]. J Trace Elem Med Biol, 2018, 50: 435-440. |
[19] | Gechev T, Petrov V. Reactive oxygen species and abiotic stress in plants[J]. Int J Mol Sci, 2020, 21(20): 7433. |
[20] | Wani KI, Naeem M, Castroverde CDM, et al. Molecular mechanisms of nitric oxide(NO)signaling and reactive oxygen species(ROS)homeostasis during abiotic stresses in plants[J]. Int J Mol Sci, 2021, 22(17): 9656. |
[21] | Akhtar N, Khan S, Rehman SU, et al. Synergistic effects of zinc oxide nanoparticles and bacteria reduce heavy metals toxicity in rice(Oryza sativa L.) plant[J]. Toxics, 2021, 9(5): 113. |
[22] |
薛欣月, 于雪然, 刘晓刚, 等. 水稻锌吸收、转运、累积机理研究进展[J]. 生物技术通报, 2022, 38(4): 29-43.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1484 |
Xue XY, Yu XR, Liu XG, et al. Research progress in absorption, transportation and accumulation mechanism of zinc in rice[J]. Biotechnol Bull, 2022, 38(4): 29-43. | |
[23] | 叶廷红, 张赓, 李小坤. 水稻锌营养及锌肥高效施用研究进展[J]. 中国土壤与肥料, 2019(6): 1-6. |
Ye TH, Zhang G, Li XK. Research advance of zinc nutrition and efficient application of zinc fertilizer in rice[J]. Soil Fertil Sci China, 2019(6): 1-6. | |
[24] |
Sturikova H, Krystofova O, Huska D, et al. Zinc, zinc nanoparticles and plants[J]. J Hazard Mater, 2018, 349: 101-110.
doi: S0304-3894(18)30040-2 pmid: 29414741 |
[25] |
Noulas C, Tziouvalekas M, Karyotis T. Zinc in soils, water and food crops[J]. J Trace Elem Med Biol, 2018, 49: 252-260.
doi: S0946-672X(17)30838-6 pmid: 29472130 |
[26] | 王梦柯. 不同外源硒吸收及木质部和韧皮部转运的差异[D]. 杨凌: 西北农林科技大学, 2019. |
Wang MK. Difference of uptake, xylem-and phloem-mediated transport of differentselenium species[D]. Yangling: Northwest A & F University, 2019. | |
[27] |
呼艳姣, 陈美凤, 强瑀, 等. 镉胁迫下锌硒交互作用对水稻镉毒害的缓解机制[J]. 生物技术通报, 2022, 38(4): 143-152.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1127 |
Hu YJ, Chen MF, Qiang Y, et al. Alleviation mechanisms of zinc-selenium interaction on the cadmium toxicity in rice under cadmium stress[J]. Biotechnol Bull, 2022, 38(4): 143-152. | |
[28] | Barker AV, Pilbeam DJ. Handbook of plant nutrition[M]. 2nd edition. Boca Raton: CRC Press, 2015. |
[29] | Ulhassan Z, Ali Gill R, Huang HF, et al. Selenium mitigates the chromium toxicity in Brassicca napus L. by ameliorating nutrients uptake, amino acids metabolism and antioxidant defense system[J]. Plant Physiol Biochem, 2019, 145: 142-152. |
[30] | Tran TAT, Zhou F, Yang WX, et al. Detoxification of mercury in soil by selenite and related mechanisms[J]. Ecotoxicol Environ Saf, 2018, 159: 77-84. |
[31] | Wu ZC, Xu SJ, Shi HZ, et al. Comparison of foliar silicon and selenium on cadmium absorption, compartmentation, translocation and the antioxidant system in Chinese flowering cabbage[J]. Ecotoxicol Environ Saf, 2018, 166: 157-164. |
[32] | Qin XM, Nie ZJ, Liu HE, et al. Influence of selenium on root morphology and photosynthetic characteristics of winter wheat under cadmium stress[J]. Environ Exp Bot, 2018, 150: 232-239. |
[33] | 陈美凤. 锌硒对镉胁迫水稻生长及镉积累的影响[D]. 贵阳: 贵州师范大学, 2021. |
Chen MF. Effects of zinc and selenium on growth and cadmium accumulation of rice under cadmium stress[D]. Guiyang: Guizhou Normal University, 2021. | |
[34] | 薛明月. 硒锌配施对土壤硒、锌生物有效性的影响及其机制[D]. 杨凌: 西北农林科技大学, 2020. |
Xue MY. Effects of selenium combined with zinc amendment on selenium and zinc bioavailability in soil and mechanisms[D]. Yangling: Northwest A & F University, 2020. | |
[35] | 刘梦圆, 孙亚飞, 周立旻, 等. 硒和生物炭联合施用降低稻米甲基汞累积的研究[J]. 地球与环境, 2022, 50(3): 340-346. |
Liu MY, Sun YF, Zhou LM, et al. Effects of the co-applications of selenium and biochar on methylmercury accumulation in rice[J]. Earth Environ, 2022, 50(3): 340-346. | |
[36] |
Tang WL, Dang F, Evans D, et al. Understanding reduced inorganic mercury accumulation in rice following selenium application: Selenium application routes, speciation and doses[J]. Chemosphere, 2017, 169: 369-376.
doi: S0045-6535(16)31622-8 pmid: 27886539 |
[37] | Li YF, Zhao JT, Li YY, et al. The concentration of selenium matters: a field study on mercury accumulation in rice by selenite treatment in Qingzhen, Guizhou, China[J]. Plant Soil, 2015, 391(1): 195-205. |
[38] | Tran TAT, Dinh QT, Cui ZW, et al. Comparing the influence of selenite(Se4+)and selenate(Se6+)on the inhibition of the mercury(Hg)phytotoxicity to pak choi[J]. Ecotoxicol Environ Saf, 2018, 147: 897-904. |
[39] | Li YY, Zhao JT, Zhang BW, et al. The influence of iron plaque on the absorption, translocation and transformation of mercury in rice(Oryza sativa L.) seedlings exposed to different mercury species[J]. Plant Soil, 2016, 398(1): 87-97. |
[40] | Zhou XB, Li YY. Effect of iron plaque and selenium on mercury uptake and translocation in rice seedlings grown in solution culture[J]. Environ Sci Pollut Res Int, 2019, 26(14): 13795-13803. |
[41] | Guo P, Du HX, Wang DY, et al. Effects of mercury stress on methylmercury production in rice rhizosphere, methylmercury uptake in rice and physiological changes of leaves[J]. Sci Total Environ, 2021, 765: 142682. |
[42] | 张涵彤, 何巧, 倪妍霞, 等. 锌对水稻幼苗镉积累及抗氧化系统的影响研究[J]. 农产品质量与安全, 2019(1): 55-61. |
Zhang HT, He Q, Ni YX, et al. Study on effect of zinc on cadmium accumulation and antioxidant system in rice seedlings[J]. Qual Saf Agro Prod, 2019(1): 55-61. | |
[43] | Tang ZY, Fan FL, Deng SP, et al. Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury - A critical review[J]. Ecotoxicol Environ Saf, 2020, 202: 110950. |
[44] | 周鑫斌, 于淑慧, 王文华, 等. 土壤施硒对水稻根表铁膜形成和汞吸收的影响[J]. 西南大学学报: 自然科学版, 2014, 36(1): 91-95. |
Zhou XB, Yu SH, Wang WH, et al. Effects of application of selenium in soil on the formation of root surface iron plaque and mercury uptake by rice plants[J]. J Southwest Univ Nat Sci Ed, 2014, 36(1): 91-95. | |
[45] | Jia HF, Song ZP, Wu FY, et al. Low selenium increases the auxin concentration and enhances tolerance to low phosphorous stress in tobacco[J]. Environ Exp Bot, 2018, 153: 127-134. |
[46] | Zhao YY, Hu CX, Wang X, et al. Selenium alleviated chromium stress in Chinese cabbage(Brassica campestris L. ssp. Pekinensis)by regulating root morphology and metal element uptake[J]. Ecotoxicol Environ Saf, 2019, 173: 314-321. |
[47] |
Malheiros RSP, Costa LC, Ávila RT, et al. Selenium downregulates auxin and ethylene biosynthesis in rice seedlings to modify primary metabolism and root architecture[J]. Planta, 2019, 250(1): 333-345.
doi: 10.1007/s00425-019-03175-6 pmid: 31030327 |
[1] | LI Xing-rong, TAN Zhi-bing, ZHAO Yan, LI Yao-kui, ZHAO Bing-ran, TANG Li. Cloning and Functional Analysis of OsLCT3, a Low-affinity Cation Transporter Gene of Rice [J]. Biotechnology Bulletin, 2024, 40(4): 97-109. |
[2] | HAN Zhi-yang, JIA Zi-miao, LIANG Qiu-ju, WANG Ke, TANG Hua-li, YE Xing-guo, ZHANG Shuang-xi. Salt Tolerance at Seedling Stage and Analysis of Selenium and Folic Acid Content in Seeds in Two Sets of Wheat-Dasypyrum villosum Chromosom Additional Lines [J]. Biotechnology Bulletin, 2023, 39(8): 185-193. |
[3] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[4] | ZHAO Jing-ya, PENG Meng-ya, ZHANG Shi-yu, SHAN Yi-xuan, XING Xiao-ping, SHI Yan, LI Hai-yang, YANG Xue, LI Hong-lian, CHEN Lin-lin. Role of C2H2 Zinc Finger Transcription Factor FpCzf7 in the Growth and Pathogenicity of Fusarium pseudograminearum [J]. Biotechnology Bulletin, 2022, 38(8): 216-224. |
[5] | HU Yan-jiao, CHEN Mei-feng, QIANG Yu, LI Hai-yan, LIU Jing, QIN Fan-xin. Alleviation Mechanisms of Zinc-selenium Interaction on the Cadmium Toxicity in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2022, 38(4): 143-152. |
[6] | XUE Xin-yue, YU Xue-ran, LIU Xiao-gang, MA Jia-xin, TIAN Lei, LI Pei-fu. Research Progress in Absorption,Transportation and Accumulation Mechanism of Zinc in Rice [J]. Biotechnology Bulletin, 2022, 38(4): 29-43. |
[7] | GUO Yan-xiu, CHEN Jing, WANG Yan-fang, SUN Chun-yu, WANG Yi, ZHANG Mei-ping. Roles of Dof Transcription Factors in the Regulation of Plant [J]. Biotechnology Bulletin, 2019, 35(5): 146-156. |
[8] | ZHANG Hao, WEI Yue-wei, JI Xiao-ming, PAN Ting-ting, WANG Hui. Preparation of Selenized Derivatives from Tobacco Leaf Polysaccharides and Its Antioxidant Activity in Vitro [J]. Biotechnology Bulletin, 2019, 35(10): 89-94. |
[9] | FENG Yu-xiang, LI Xiang-yang, SHAO Xiang-li, XU Wen-tao. The Development of Sensors for the Detection of Hg2+ [J]. Biotechnology Bulletin, 2018, 34(9): 116-128. |
[10] | LI Wen-zong, LI You-fang ,Li Wei-hua ,WANG Lei. Effects of Leaf Spraying Fertilizer on Mineral Elements in Wheat Grain [J]. Biotechnology Bulletin, 2018, 34(6): 90-95. |
[11] | LI Wen-zong, LI Wei-hua, XU Miao-yun, WANG Lei. Analysis of Mineral Elements in Maize Kernel Treated with Leaf Fertilizers [J]. Biotechnology Bulletin, 2018, 34(5): 110-116. |
[12] | LI Su-zhen, CHEN Ru-mei. Function Analysis of ZIP in Plant [J]. Biotechnology Bulletin, 2018, 34(11): 1-7. |
[13] | LOU Xing-dan, ZHANG Gen-lin, YE Bang-ce. Screening of High Selenium-enriched Yeast and Enhancement of Its Selenium-enriched Capacity [J]. Biotechnology Bulletin, 2017, 33(12): 132-137. |
[14] | CHEN Yang, SONG Tian-shun, ZHOU Guo-ling, XIE Jing-jing. Isolation and Identification of a Zinc-resistant Strain and Effect of Its Characteristics on the Remediation Efficiency of Brassica juncea in Zinc-polluted Soil [J]. Biotechnology Bulletin, 2017, 33(10): 156-162. |
[15] | LUO Yang, TENG Ying, LUO Xu-qiang, LI Zhen-gao. Development of Wettable Powder of Trichoderma reesei FS10-C and Its Plant Growth-promoting Effects [J]. Biotechnology Bulletin, 2016, 32(8): 194-199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||