Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (8): 53-62.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0058
Previous Articles Next Articles
SUN Zhi-yong1(), DU Huai-dong1, LIU Yang1, MA Jia-xin1, YU Xue-ran1,2, MA Wei1, YAO Xin-jie1, WANG Min1, LI Pei-fu1()
Received:
2024-01-15
Online:
2024-08-26
Published:
2024-09-05
Contact:
LI Pei-fu
E-mail:1055196309@qq.com;peifuli@163.com
SUN Zhi-yong, DU Huai-dong, LIU Yang, MA Jia-xin, YU Xue-ran, MA Wei, YAO Xin-jie, WANG Min, LI Pei-fu. Genome-wide Association Analysis of γ-aminobutyric Acid in Rice Grains[J]. Biotechnology Bulletin, 2024, 40(8): 53-62.
变异来源Source of variation | 自由度Degree of freedom | 平方和Sum of squares | 均方Mean square | F值F value | P 值P value |
---|---|---|---|---|---|
群组间Between-group | 138 | 133 214.515 | 965.323 | 213.578 | 0.000 |
群组内Within-group | 278 | 1 256.493 | 4.520 | ||
总计Total | 416 | 134 471.008 |
Table 1 Variance analysis of GABA content in 139 varieties of germplasm resources
变异来源Source of variation | 自由度Degree of freedom | 平方和Sum of squares | 均方Mean square | F值F value | P 值P value |
---|---|---|---|---|---|
群组间Between-group | 138 | 133 214.515 | 965.323 | 213.578 | 0.000 |
群组内Within-group | 278 | 1 256.493 | 4.520 | ||
总计Total | 416 | 134 471.008 |
SNP | 染色体 Chromosome | 位置 Location/bp | 置信区间起点 Starting point of confidence interval | 置信区间终点 End point of confidence interval | 参考碱基 Reference base | 变异碱基 Variant base | -log10(P) |
---|---|---|---|---|---|---|---|
S6-3357208 | 6 | 3357208 | 3057208 | 3657208 | G | A | 7.07 |
S8-6442742 | 8 | 6442742 | 6142742 | 6742742 | A | C | 6.51 |
S8-20231522 | 8 | 20231522 | 19931522 | 20531522 | T | C | 7.23 |
S9-5559515 | 9 | 5559515 | 5259515 | 5859515 | C | T | 6.45 |
S11-4162881 | 11 | 4162881 | 3862881 | 4462881 | C | T | 6.80 |
S12-12473570 | 12 | 12473570 | 12173570 | 12773570 | T | C | 6.26 |
Table 2 Genome-wide association analysis of significant SNPs loci
SNP | 染色体 Chromosome | 位置 Location/bp | 置信区间起点 Starting point of confidence interval | 置信区间终点 End point of confidence interval | 参考碱基 Reference base | 变异碱基 Variant base | -log10(P) |
---|---|---|---|---|---|---|---|
S6-3357208 | 6 | 3357208 | 3057208 | 3657208 | G | A | 7.07 |
S8-6442742 | 8 | 6442742 | 6142742 | 6742742 | A | C | 6.51 |
S8-20231522 | 8 | 20231522 | 19931522 | 20531522 | T | C | 7.23 |
S9-5559515 | 9 | 5559515 | 5259515 | 5859515 | C | T | 6.45 |
S11-4162881 | 11 | 4162881 | 3862881 | 4462881 | C | T | 6.80 |
S12-12473570 | 12 | 12473570 | 12173570 | 12773570 | T | C | 6.26 |
Fig. 4 Expression patterns of key genes for GABA content in rice grains SR: Radicle. ML: Mature leaf.YL: Young leaf. SAM: Germination stage of apical meristem and axial meristem. YI: Flower transition and floral organ development stage. P2-P3: Meiosis stage. P4: Young microspore stage. P5: Vacuolated pollen stage. P6: Mature pollen stage. S1: Early globular embryo stage. S2: Mid-late globular embryo stage. S3: Seed morphogenesis stage. S4: Seed maturity stage.S5: Seed dormancy and dehydration tolerance stage, the same below
Fig. 6 Relative expressions of LOC_Os09g10720 genes at different stages after flowering * and *** indicates significant at 0.05 and 0.001 probability levels respectively
Fig. 7 GABA metabolic pathway Glu: Glutamic acid; 2-OG: α-ketoglutaric acid; Succ-CoA: Succinyl-CoA; Fuma: Fumaric acid; Succ: Succinic acid; SSA: Succinic semialdehyde; Arg: Arginine; P5C: 1-pyrroline-5-carboxylic acid; Orn: Ornithine; Agm: Agmatine; 1-pyrroline: 1-pyrroline; Put: Putrescine; ABAL: 4-aminobutyraldehyde; Spd: Spermidine; Spm: Spermine; GDH: Glutamate dehydrogenase; SSADH: Succinic semialdehyde dehydrogenase; GABA-T: γ-aminobutyric acid transaminase; GAD: Glutamic acid decarboxylase; P5CDH: Pyrroline-5-carboxylic acid dehydrogenase; P5CS: 1-pyrroline-5-carboxylic acid synthetase; BADH2: Betaine aldehyde dehydrogenase 2; OAT: ornithine aminotransferase; ARG: Arginase; ADC: Arginine decarboxylase; ODC: Ornithine decarboxylase; AgmAH: Agmatine amidohydrolase; DAO: Diamine oxidase; Spms: Spermine synthetase; PAO: Polyamine oxidase; SpdS: Spermidine synthetase
[1] |
Inoue K, Shirai T, Ochiai H, et al. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid(GABA)in mild hypertensives[J]. Eur J Clin Nutr, 2003, 57(3): 490-495.
doi: 10.1038/sj.ejcn.1601555 pmid: 12627188 |
[2] | Schweizer-Schubert S, Gordon JL, Eisenlohr-Moul TA, et al. Steroid hormone sensitivity in reproductive mood disorders: on the role of the GABAA receptor complex and stress during hormonal transitions[J]. Front Med, 2021, 7: 479646. |
[3] | Oketch-Rabah HA, Madden EF, Roe AL, et al. United states pharmacopeia(USP)safety review of Gamma-aminobutyric acid(GABA)[J]. Nutrients, 2021, 13(8): 2742. |
[4] | Gramazio P, Takayama M, Ezura H. Challenges and prospects of new plant breeding techniques for GABA improvement in crops: tomato as an example[J]. Front Plant Sci, 2020, 11: 577980. |
[5] | Yu YJ, Li M, Li CX, et al. Accelerated accumulation of γ-aminobutyric acid and modifications on its metabolic pathways in black rice grains by germination under cold stress[J]. Foods, 2023, 12(6): 1290. |
[6] | Shelp BJ, Zarei A. Subcellular compartmentation of 4-aminobutyrate(GABA)metabolism in Arabidopsis: an update[J]. Plant Signal Behav, 2017, 12(5): e1322244. |
[7] | 黄志伟, 许明, 林忠辉, 等. 籼稻GAD基因的克隆、序列分析及其植物表达载体构建[J]. 南方农业学报, 2012, 43(8): 1079-1085. |
Huang ZW, Xu M, Lin ZH, et al. Cloning, sequence analysis of GAD gene from indica rice and its plant expression vector construction[J]. J South Agric, 2012, 43(8): 1079-1085. | |
[8] | 向文豪, 崔国鹏, 王圣洁, 等. 基于Diurnal在线软件分析拟南芥生物节律基因对GABA的响应[J]. 安徽农学通报, 2014, 20(8): 24-27, 45. |
Xiang WH, Cui GP, Wang SJ, et al. Analyzing gene expression of circadian clock in responding to GABA in Arabidopsis based on diurnal-online software application[J]. Anhui Agric Sci Bull, 2014, 20(8): 24-27, 45. | |
[9] | 李敬蕊, 田真, 吴晓蕾, 等. 小白菜GAD基因克隆及高氮条件下外源GABA的诱导表达分析[J]. 农业生物技术学报, 2017, 25(8): 1217-1227. |
Li JR, Tian Z, Wu XL, et al. Cloning of GAD gene in pakchoi(Brassica campestris ssp. chinensis)and induced expression analysis treated with exogenous GABA under higher nitrogen level[J]. J Agric Biotechnol, 2017, 25(8): 1217-1227. | |
[10] |
李明轩, 刘颖, 杨柏明, 等. 西瓜谷氨酸脱羧酶GADs的克隆与表达分析[J]. 华北农学报, 2023, 38(6): 18-25.
doi: 10.7668/hbnxb.20194340 |
Li MX, Liu Y, Yang BM, et al. Cloning and expression analysis of glutamate decarboxylase GADs from watermelon[J]. Acta Agric Boreali Sin, 2023, 38(6): 18-25. | |
[11] | Akama K, Akter N, Endo H, et al. An in vivo targeted deletion of the calmodulin-binding domain from rice glutamate decarboxylase 3(OsGAD3)increases γ-aminobutyric acid content in grains[J]. Rice, 2020, 13(1): 20. |
[12] | Agudelo-Romero P, Bortolloti C, Pais MS, et al. Study of polyamines during grape ripening indicate an important role of polyamine catabolism[J]. Plant Physiol Biochem, 2013, 67: 105-119. |
[13] | Liao YX, Li MY, Wu HZ, et al. Generation of aroma in three-line hybrid rice through CRISPR/Cas9 editing of BETAINE ALDEHYDE DEHYDROGENASE2(OsBADH2)[J]. Physiol Plant, 2024, 176(1): e14206. |
[14] | Shimajiri Y, Ozaki K, Kainou K, et al. Differential subcellular localization, enzymatic properties and expression patterns of γ-aminobutyric acid transaminases(GABA-Ts)in rice(Oryza sativa)[J]. J Plant Physiol, 2013, 170(2): 196-201. |
[15] | Tola AJ, Jaballi A, Germain H, et al. Recent development on plant aldehyde dehydrogenase enzymes and their functions in plant development and stress signaling[J]. Genes, 2020, 12(1): 51. |
[16] | Hidalgo-Castellanos J, Duque AS, Burgueño A, et al. Overexpression of the arginine decarboxylase gene promotes the symbiotic interaction Medicago truncatula-Sinorhizobium meliloti and induces the accumulation of proline and spermine in nodules under salt stress conditions[J]. J Plant Physiol, 2019, 241: 153034. |
[17] | Bukomarhe CB, Kimwemwe PK, Githiri SM, et al. Association mapping of candidate genes associated with iron and zinc content in rice(Oryza sativa L.)grains[J]. Genes, 2023, 14(9): 1815. |
[18] |
王龙海, 杨泽伟, 朱莉, 等. 甜高粱琥珀酸半醛脱氢酶SbSSADH基因克隆及原核表达[J]. 生物技术通报, 2015, 31(7): 83-90.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.07.013 |
Wang LH, Yang ZW, Zhu L, et al. Cloning and prokaryotic expression of sweet sorghum succinic semialdehyde dehydrogenase SbSSADH[J]. Biotechnol Bull, 2015, 31(7): 83-90. | |
[19] | Alqudah AM, Sallam A, Stephen Baenziger P, et al. GWAS: fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley - A review[J]. J Adv Res, 2019, 22: 119-135. |
[20] | Ntakirutimana F, Tranchant-Dubreuil C, Cubry P, et al. Genome-wide association analysis identifies natural allelic variants associated with panicle architecture variation in African rice, Oryza glaberrima Steud[J]. G3, 2023, 13(10): jkad174. |
[21] |
刘忠奇, 张海清, 贺记外, 等. 成熟期水稻种子脱水速率全基因组关联分析[J]. 中国水稻科学, 2024, 38(2): 150-159.
doi: 10.16819/j.1001-7216.2024.230305 |
Liu ZQ, Zhang HQ, He JW, et al. Genome-wide association analysis of rice seed dehydration rate at maturity stage[J]. Chin J Rice Sci, 2024, 38(2): 150-159.
doi: 10.16819/j.1001-7216.2024.230305 |
|
[22] | 孙晓雪. 水稻功能性营养品质性状QTL定位及环境互作分析[D]. 哈尔滨: 东北农业大学, 2017. |
Sun XX. Analysis of qtl mapping and environmental interaction of functional nutritional quality traits in rice[D]. Harbin: Northeast Agricultural University, 2017. | |
[23] | 田玲, 王康恺, 王迎超, 等. 水稻籽粒γ-氨基丁酸含量的QTL定位分析[J]. 植物遗传资源学报, 2019, 20(6): 1517-1522. |
Tian L, Wang KK, Wang YC, et al. QTL mapping for the genetic components determining the rice grain γ-aminobutyric acid content[J]. J Plant Genet Resour, 2019, 20(6): 1517-1522. | |
[24] | 王迎超, 王全兴, 王浩, 等. 富γ-氨基丁酸水稻种质筛选及与子粒性状相关性分析[J]. 植物遗传资源学报, 2016, 17(6): 1116-1122. |
Wang YC, Wang QX, Wang H, et al. Selection of rice germplasm with rich γ-aminobutyric acid and correlation analysis of the content and grain traits[J]. J Plant Genet Resour, 2016, 17(6): 1116-1122. | |
[25] | 陈雪, 刘明, 汪丽萍, 等. 柱前在线衍生-HPLC法测定发芽糙米中γ-氨基丁酸含量[J]. 粮油食品科技, 2017, 25(3): 48-53. |
Chen X, Liu M, Wang LP, et al. Determination of γ-aminobutyric acid in germinated brown rice by online pre-column derivatization combined with HPLC[J]. Sci Technol Cereals Oils Foods, 2017, 25(3): 48-53. | |
[26] | Hui SZ, Li HJ, Mawia AM, et al. Production of aromatic three-line hybrid rice using novel alleles of BADH2[J]. Plant Biotechnol J, 2022, 20(1): 59-74. |
[27] | 周露, 沈贝贝, 白苏阳, 等. 以RNA干扰γ-氨基丁酸转氨酶1基因(OsGABA-T1)表达提高稻米γ-氨基丁酸(GABA)含量[J]. 作物学报, 2015, 41(9): 1305-1312. |
Zhou L, Shen BB, Bai SY, et al. RNA interference of Os GABA-T1 gene expression induced GABA accumulation in rice grain[J]. Acta Agron Sin, 2015, 41(9): 1305-1312. | |
[28] |
潘阳阳, 陈宜波, 王重荣, 等. γ-氨基丁酸和2-乙酰-1-吡咯啉代谢通路在水稻籽粒发育过程中的变化分析[J]. 中国水稻科学, 2021, 35(2): 121-129.
doi: 10.16819/j.1001-7216.2021.0805 |
Pan YY, Chen YB, Wang CR, et al. Metabolism of γ-aminobutyrate and 2-acetyl-1-pyrroline analyses at various grain developmental stages in rice(Oryza sativa L.)[J]. Chin J Rice Sci, 2021, 35(2): 121-129. | |
[29] | 胡伟, 杨晓颖, 李美英, 等. 香蕉谷氨酸脱羧酶基因克隆与表达[J]. 西北植物学报, 2009, 29(3): 429-434. |
Hu W, Yang XY, Li MY, et al. Cloning and expression analysis of MaGAD1 gene from banana fruit[J]. Acta Bot Boreali Occidentalia Sin, 2009, 29(3): 429-434. | |
[30] | Michaeli S, Fait A, Lagor K, et al. A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism[J]. Plant J, 2011, 67(3): 485-498. |
[31] | Podlešáková K, Ugena L, Spíchal L, et al. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway[J]. N Biotechnol, 2019, 48: 53-65. |
[1] | LI Qing-mao, PENG Cong-gui, QI Xiao-han, LIU Xing-lei, LI Zhen-yuan, LI Qin-yan, HUANG Li-yu. Screening and Identification of Excellent Strains of Endophytic Bacteria Promoting Rice Iron Absorption from Wild Rice [J]. Biotechnology Bulletin, 2024, 40(8): 255-263. |
[2] | PANG Meng-zhen, XU Han-qin, LIU Hai-yan, SONG Juan, WANG Jia-han, SUN Li-na, JI Pei-mei, YIN Ze-zhi, HU You-chuan, ZHAO Xiao-meng, LIANG Shan-shan, ZHANG Si-ju, LUAN Wei-jiang. Gene Identification and Functional Analysis of Yellowish and Early Heading Mutant hz1 in Rice [J]. Biotechnology Bulletin, 2024, 40(7): 125-136. |
[3] | TIAN Sheng-ni, ZHANG Qin, DONG Yu-fei, DING Zhou, YE Ai-hua, ZHANG Ming-zhu. Effects of Acid Mine Drainage on Physicochemical Factors and Nitrogen-fixing Microorganisms in the Root Zone of Mature Rice [J]. Biotechnology Bulletin, 2024, 40(6): 271-280. |
[4] | KONG De-ting, QI Xiao-han, LIU Xing-lei, LI Li-ping, HU Feng-yi, HUANG Li-yu, QIN Shi-wen. Comparison and Analysis of Endophytic Bacterial Communities in Different Perennial Rice Varieties [J]. Biotechnology Bulletin, 2024, 40(5): 225-236. |
[5] | YANG Qi, WEI Zi-di, SONG Juan, TONG Kun, YANG Liu, WANG Jia-han, LIU Hai-yan, LUAN Wei-jiang, MA Xuan. Construction and Transcriptomic Analysis of Rice Histone H1 Triple Mutant [J]. Biotechnology Bulletin, 2024, 40(4): 85-96. |
[6] | LI Xing-rong, TAN Zhi-bing, ZHAO Yan, LI Yao-kui, ZHAO Bing-ran, TANG Li. Cloning and Functional Analysis of OsLCT3, a Low-affinity Cation Transporter Gene of Rice [J]. Biotechnology Bulletin, 2024, 40(4): 97-109. |
[7] | LIU Jia-ning, LI Meng, YANG Xin-sen, WU Wei, PEI Xin-wu, YUAN Qian-hua. Impact of Different Water Management Cultivation Methods on the Rhizosphere Bacteria Community of Shanlan Upland Rice [J]. Biotechnology Bulletin, 2024, 40(3): 242-250. |
[8] | SHAN Xin-yu, LI Tai-chun, YANG Ruo-chen, DUAN Xiang-ru, KANG Jia, ZHANG Ying-jie, LIU Yue-qin. Effect of γ-aminobutyric Acid on Apoptosis and the Secretion of Steroid Hormone in Ovine Ovarian Granulosa Cells [J]. Biotechnology Bulletin, 2024, 40(3): 312-321. |
[9] | LI Xue, LI Rong-ou, KONG Mei-yi, HUANG Lei. The Growth Promoting Effect of Bacillus amyloliquefaciens SQ-2 on Rice [J]. Biotechnology Bulletin, 2024, 40(2): 109-119. |
[10] | ZHANG Chao, WANG Zi-rui, SUN Ya-li, MAO Xin-chen, TANG Jia-qi, YU Heng-xiu. Functional Study of Vitamin B1 Synthesis-related Gene OsTHIC in Rice [J]. Biotechnology Bulletin, 2024, 40(2): 99-108. |
[11] | LIN Xin-yan, ZHANG Chuan-zhong, DAI Bing, WANG Xin-heng, LIU Jian-feng, WEN Li, XU Xing-jian, FANG Jun. Advances in Genetic and Molecular Mechanisms of Pre-harvest Sprouting in Rice [J]. Biotechnology Bulletin, 2024, 40(1): 24-31. |
[12] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[13] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[14] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[15] | XU Jian-xia, DING Yan-qing, FENG Zhou, CAO Ning, CHENG Bin, GAO Xu, ZOU Gui-hua, ZHANG Li-yi. QTL Mapping of Sorghum Plant Height and Internode Numbers Based on Super-GBS Technique [J]. Biotechnology Bulletin, 2023, 39(7): 185-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||