Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (5): 225-236.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1088
Previous Articles Next Articles
KONG De-ting(), QI Xiao-han, LIU Xing-lei, LI Li-ping, HU Feng-yi, HUANG Li-yu, QIN Shi-wen()
Received:
2023-11-20
Online:
2024-05-26
Published:
2024-06-13
Contact:
QIN Shi-wen
E-mail:kdt7798@163.com;shiwenqin@ynu.edu.cn
KONG De-ting, QI Xiao-han, LIU Xing-lei, LI Li-ping, HU Feng-yi, HUANG Li-yu, QIN Shi-wen. Comparison and Analysis of Endophytic Bacterial Communities in Different Perennial Rice Varieties[J]. Biotechnology Bulletin, 2024, 40(5): 225-236.
Fig. 1 α and β diversity of endophytic bacterial communities in the aboveground and the underground compartments of perennial rice varieties PR23 and PR25 are japonica subspecies, and PR107 is indica subspecies
Fig. 2 Composition of endophytic bacteria at phyla level in the aboveground and the underground compartments(A)of perennial rice varieties as well as the common and variety-specific endophytic bacterial ASVs in perennial rice(B)
Fig. 3 Endophytic bacterial genera(A)and biomarking endophytic bacteria(B)with top 20 of relative abundances in the aboveground and the underground compartments of perennial rice varieties
[1] |
张石来, 黄光福, 张玉娇, 等. 多年生稻育种进展及展望[J]. 中国稻米, 2022, 28(5): 39-43.
doi: 10.3969/j.issn.1006-8082.2022.05.006 |
Zhang SL, Huang GF, Zhang YJ, et al. Breeding progress and prospect of perennial rice[J]. China Rice, 2022, 28(5): 39-43.
doi: 10.3969/j.issn.1006-8082.2022.05.006 |
|
[2] | Zhang SL, Huang GF, Zhang YJ, et al. Sustained productivity and agronomic potential of perennial rice[J]. Nat Sustain, 2023, 6: 28-38. |
[3] |
Cordovez V, Dini-Andreote F, Carrión VJ, et al. Ecology and evolution of plant microbiomes[J]. Annu Rev Microbiol, 2019, 73: 69-88.
doi: 10.1146/annurev-micro-090817-062524 pmid: 31091418 |
[4] |
White JF, Kingsley KL, Zhang QW, et al. Review: Endophytic microbes and their potential applications in crop management[J]. Pest Manag Sci, 2019, 75(10): 2558-2565.
doi: 10.1002/ps.5527 pmid: 31228333 |
[5] | Liu D, Lin L, Zhang T, et al. Wild Panax plants adapt to their thermal environment by harboring abundant beneficial seed endophytic bacteria[J]. Front Ecol Evol, 2022, 10: 967692. |
[6] | Kim H, Lee YH. The rice microbiome: a model platform for crop holobiome[J]. Phytobiomes J, 2020, 4(1): 5-18. |
[7] |
Wani ZA, Ashraf N, Mohiuddin T, et al. Plant-endophyte symbiosis, an ecological perspective[J]. Appl Microbiol Biotechnol, 2015, 99(7): 2955-2965.
doi: 10.1007/s00253-015-6487-3 pmid: 25750045 |
[8] |
Afzal I, Shinwari ZK, Sikandar S, et al. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants[J]. Microbiol Res, 2019, 221: 36-49.
doi: S0944-5013(18)30459-2 pmid: 30825940 |
[9] |
Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MD, et al. Plant growth-promoting bacterial endophytes[J]. Microbiol Res, 2016, 183: 92-99.
doi: 10.1016/j.micres.2015.11.008 pmid: 26805622 |
[10] |
Kumar V, Nautiyal CS. Plant abiotic and biotic stress alleviation: from an endophytic microbial perspective[J]. Curr Microbiol, 2022, 79(10): 311.
doi: 10.1007/s00284-022-03012-2 pmid: 36088388 |
[11] | Sharma P, Kumar S. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: recent advances[J]. Bioresour Technol, 2021, 339: 125589. |
[12] | Otlewska A, Migliore M, Dybka-Stępień K, et al. When salt meddles between plant, soil, and microorganisms[J]. Front Plant Sci, 2020, 11: 553087. |
[13] |
Wang Q, Ma LY, Zhou QY, et al. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency[J]. Chemosphere, 2019, 234: 769-776.
doi: S0045-6535(19)31373-6 pmid: 31238273 |
[14] | Mushtaq S, Shafiq M, Tariq MR, et al. Interaction between bacterial endophytes and host plants[J]. Front Plant Sci, 2023, 13: 1092105. |
[15] | Tang R, Tian QL, Liu S, et al. Endophytic bacteria in different tissue compartments of African wild rice(Oryza longistaminata)promote perennial rice growth[J]. J Integr Agric, 2023:1-23. |
[16] |
Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nat Biotechnol, 2019, 37(8): 852-857.
doi: 10.1038/s41587-019-0209-9 pmid: 31341288 |
[17] | Douglas GM, Maffei VJ, Zaneveld J, et al. PICRUSt2: an improved and customizable approach for metagenome inference[J]. bioRxiv, 2020. DOI: 10.1101/672295. |
[18] | Xie J, Wang XQ, Xu JW, et al. Strategies and structure feature of the aboveground and belowground microbial community respond to drought in wild rice(Oryza longistaminata)[J]. Rice, 2021, 14(1): 79. |
[19] | Chang JJ, Tian L, Leite MFA, et al. Nitrogen, manganese, iron, and carbon resource acquisition are potential functions of the wild rice Oryza rufipogon core rhizomicrobiome[J]. Microbiome, 2022, 10(1): 196. |
[20] | Xu SQ, Chang JJ, Chang CL, et al. Rhizospheric microbiomes help Dongxiang common wild rice(Oryza rufipogon Griff.) rather than Leersia hexandra Swartz survive under cold stress[J]. Arch Agron Soil Sci, 2022, 68(1): 76-88. |
[21] | Lin GY, Lin CY, Chang SJ, et al. The dynamics of endophytic bacterial community structure in rice roots under different field management systems[J]. Agronomy, 2020, 10(11): 1623. |
[22] | Peng XJ, Xie J, Li WZ, et al. Comparison of wild rice(Oryza longistaminata)tissues identifies rhizome-specific bacterial and archaeal endophytic microbiomes communities and network structures[J]. PLoS One, 2021, 16(2): e0246687. |
[23] | Wang P, Kong X, Chen HS, et al. Exploration of intrinsic microbial community modulators in the rice endosphere indicates a key role of distinct bacterial taxa across different cultivars[J]. Front Microbiol, 2021, 12: 629852. |
[24] | Yin Y, Wang YF, Cui HL, et al. Distinctive structure and assembly of phyllosphere microbial communities between wild and cultivated rice[J]. Microbiol Spectr, 2023, 11(1): e0437122. |
[25] | Wang ZS, Zhu YQ, Jing RX, et al. High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of upland rice[J]. Arch Microbiol, 2021, 203(2): 609-620. |
[26] |
Singha KM, Singh B, Pandey P. Host specific endophytic microbiome diversity and associated functions in three varieties of scented black rice are dependent on growth stage[J]. Sci Rep, 2021, 11(1): 12259.
doi: 10.1038/s41598-021-91452-4 pmid: 34112830 |
[27] | Oyserman BO, Cordovez V, Flores SS, et al. Extracting the GEMs: genotype, environment, and microbiome interactions shaping host phenotypes[J]. Front Microbiol, 2021, 11: 574053. |
[28] |
Kumar J, Babele PK, Singh D, et al. UV-B radiation stress causes alterations in whole cell protein profile and expression of certain genes in the rice phyllospheric bacterium Enterobacter cloacae[J]. Front Microbiol, 2016, 7: 1440.
doi: 10.3389/fmicb.2016.01440 pmid: 27672388 |
[29] | Pattnaik S, Dash D, Mohapatra S, et al. Improvement of rice plant productivity by native Cr(VI)reducing and plant growth promoting soil bacteria Enterobacter cloacae[J]. Chemosphere, 2020, 240: 124895. |
[30] | Wang X, Xu Q, Hu K, et al. A coculture of Enterobacter and Comamonas species reduces cadmium accumulation in rice[J]. Mol Plant Microbe Interact, 2023, 36(2): 95-108. |
[31] | Nouha K, Kumar RS, Tyagi RD. Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods[J]. Bioresour Technol, 2016, 212: 120-129. |
[32] | He DX, Singh SK, Peng L, et al. Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance[J]. ISME J, 2022, 16(11): 2622-2632. |
[33] | Silveira Alves LP, Plucani do Amaral F, Kim D, et al. Importance of poly-3-hydroxybutyrate metabolism to the ability of Herbaspirillum seropedicae to promote plant growth[J]. Appl Environ Microbiol, 2019, 85(6): e02586-18. |
[34] | Stahl A, Pletzer D, Mehmood A, et al. Marinobacter adhaerens HP15 harbors two CzcCBA efflux pumps involved in zinc detoxification[J]. Antonie Van Leeuwenhoek, 2015, 108(3): 649-658. |
[35] | Luo X, Guo JY, Lan Y, et al. Toxic response of antimony in the Comamonas testosteroni and its application in soil antimony bioremediation[J]. Environ Int, 2023, 178: 108040. |
[36] | Gureeva MV, Gureev AP. Molecular mechanisms determining the role of bacteria from the genus Azospirillum in plant adaptation to damaging environmental factors[J]. Int J Mol Sci, 2023, 24(11): 9122. |
[37] | Hung SH W, Chiu MC, Huang CC, et al. Complete genome sequence of Curtobacterium sp. C1, a beneficial endophyte with the potential for In-plant salinity stress alleviation[J]. Mol Plant Microbe Interact, 2022, 35(8): 731-735. |
[38] | Wang F, Wei YL, Yan TZ, et al. Sphingomonas sp. Hbc-6 alters physiological metabolism and recruits beneficial rhizosphere bacteria to improve plant growth and drought tolerance[J]. Front Plant Sci, 2022, 13: 1002772. |
[39] | Kim K, Yim W, Trivedi P, et al. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper(Capsicum annuum L.)[J]. Plant Soil, 2010, 327(1): 429-440. |
[40] | Yao F, Hu QY, Yu YZ, et al. Regeneration pattern and genome-wide transcription profile of rhizome axillary buds after perennial rice harvest[J]. Front Plant Sci, 2022, 13: 1071038. |
[41] | Dhungana SA, Itoh K. Effects of co-inoculation of indole-3-acetic acid-producing and-degrading bacterial endophytes on plant growth[J]. Horticulturae, 2019, 5(1): 17. |
[42] | Khan AL, Waqas M, Kang SM, et al. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth[J]. J Microbiol, 2014, 52(8): 689-695. |
[43] |
施继芳, 黄光福, 张玉娇, 等. 不同海拔地区多年生稻稻米品质分析[J]. 中国稻米, 2020, 26(4): 40-43.
doi: 10.3969/j.issn.1006-8082.2020.04.009 |
Shi JF, Huang GF, Zhang YJ, et al. Quality analysis of perennial rice in different altitude regions[J]. China Rice, 2020, 26(4): 40-43.
doi: 10.3969/j.issn.1006-8082.2020.04.009 |
|
[44] | Reinauer KM, Popovic J, Weber CD, et al. Hydrogenophaga carboriunda sp. nov., a tertiary butyl alcohol-oxidizing, psychrotolerant aerobe derived from granular-activated carbon(GAC)[J]. Curr Microbiol, 2014, 68(4): 510-517. |
[45] |
何奕霏, 秦世雯, 张石来, 等. 多年生稻稻瘟病抗性评价[J]. 中国稻米, 2021, 27(1): 9-13.
doi: 10.3969/j.issn.1006-8082.2021.01.003 |
He YF, Qin SW, Zhang SL, et al. Evaluation of rice blast resistance in perennial rice[J]. China Rice, 2021, 27(1): 9-13.
doi: 10.3969/j.issn.1006-8082.2021.01.003 |
|
[46] | Ogunyemi SO, Chen J, Zhang MC, et al. Identification and characterization of five new OP2-related Myoviridae bacteriophages infecting different strains of Xanthomonas oryzae pv. oryzae[J]. J Plant Pathol, 2019, 101(2): 263-273. |
[47] | Yang RH, Shi Q, Huang TT, et al. The natural pyrazolotriazine pseudoiodinine from Pseudomonas mosselii 923 inhibits plant bacterial and fungal pathogens[J]. Nat Commun, 2023, 14(1): 734. |
[48] | Tian QL, Gong YR, Liu S, et al. Endophytic bacterial communities in wild rice(Oryza officinalis)and their plant growth-promoting effects on perennial rice[J]. Front Plant Sci, 2023, 14: 1184489. |
[49] | 马永海, 田青霖, 龚禹瑞, 等. 普通野生稻内生细菌的分离鉴定及其对多年生稻的促生效果[J]. 云南大学学报:自然科学版, 2023, 45(3): 768-778. |
Ma YH, Tian QL, Gong YR, et al. Screening and identification of endophytic bacteria from Oryza rufipogon and their effect on perennial rice growth[J]. Journal of Yunnan University Natural Sciences, 2023, 45(3): 768-778. | |
[50] |
杨立凡, 田青霖, 龚禹瑞, 等. 小粒野生稻内生细菌的分离鉴定和促生功能分析[J]. 中国稻米, 2023, 29(4): 78-83.
doi: 10.3969/j.issn.1006-8082.2023.04.014 |
Yang LF, Tian QL, Gong YR, et al. Screening and identification of endophytic bacteria from Oryza minuta and their plant growth-promoting activities[J]. China Rice, 2023, 29(4): 78-83. | |
[51] | Marag PS, Suman A. Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize(Zea mays L.)[J]. Microbiol Res, 2018, 214: 101-113. |
[52] |
Beckers B, De Beeck MO, Weyens N, et al. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees[J]. Microbiome, 2017, 5(1): 25.
doi: 10.1186/s40168-017-0241-2 pmid: 28231859 |
[53] | Martins MR, Jantalia CP, Reis VM, et al. Impact of plant growth-promoting bacteria on grain yield, protein content, and urea-15N recovery by maize in a Cerrado Oxisol[J]. Plant Soil, 2018, 422(1): 239-250. |
[54] | Kuang WQ, Sanow S, Kelm JM, et al. N-dependent dynamics of root growth and nitrate and ammonium uptake are altered by the bacterium Herbaspirillum seropedicae in the cereal model Brachypodium distachyon[J]. J Exp Bot, 2022, 73(15): 5306-5321. |
[55] | Pereira NCM, Galindo FS, Gazola RPD, et al. Corn yield and phosphorus use efficiency response to phosphorus rates associated with plant growth promoting bacteria[J]. Front Environ Sci, 2020, 8: 40. |
[56] | Kumar P, Verma A, Sundharam SS, et al. Exploring diversity and polymer degrading potential of epiphytic bacteria isolated from marine macroalgae[J]. Microorganisms, 2022, 10(12): 2513. |
[57] | Pandey PK, Yadav SK, Singh A, et al. Cross-species alleviation of biotic and abiotic stresses by the endophyte Pseudomonas aeruginosa PW09[J]. J Phytopathol, 2012, 160(10): 532-539. |
[58] | Ali M, Ali Q, Sohail MA, et al. Diversity and taxonomic distribution of endophytic bacterial community in the rice plant and its prospective[J]. Int J Mol Sci, 2021, 22(18): 10165. |
[1] | YU Li-jun, WANG Qiao-mei, PENG Wen-shu, YAN Liang, YANG Rui-juan. Study on the Microbial Community of Rhizosphere Soil in Ancient Tea Garden and Modern Organic Tea Garden in Jingmai Mountain [J]. Biotechnology Bulletin, 2024, 40(5): 237-247. |
[2] | GAO Yu-kun, ZHANG Jian-dong, YANG Pu-yuan, CHEN Dong-ming, WANG Zhi-bo, TIAN Yi-jin, Zakey Eldinn. E. A. Khlid, CUI Jiang-hui, CHANG Jin-hua. Responses of Sorghum Rhizosphere Soil Bacterial Communities to Salt Stress [J]. Biotechnology Bulletin, 2024, 40(4): 203-216. |
[3] | XU Yang, ZHANG Rui-ying, DAI Liang-xiang, ZHANG Guan-chu, DING Hong, ZHANG Zhi-meng. Regulation of Nitrogen Application on Peanut Seed Germination and Spermosphere Bacterial Community Structure Under Salt Stress [J]. Biotechnology Bulletin, 2024, 40(2): 253-265. |
[4] | WANG Yu, YIN Ming-shen, YIN Xiao-yan, XI Jia-qin, YANG Jian-wei, NIU Qiu-hong. Screening, Identification and Degradation Characteristics of Nicotine-degrading Bacteria in Lasioderma serricorne [J]. Biotechnology Bulletin, 2023, 39(6): 308-315. |
[5] | LI Yi-jun, WU Chen-chen, LI Rui, WANG Zhe, HE Shan-wen, WEI Shan-jun, ZHANG Xiao-xia. Exploring Cultivation Approaches for New Endophytic Bacterial Resource in Oryza sativa [J]. Biotechnology Bulletin, 2023, 39(4): 201-211. |
[6] | LUO Yan-ju, XIE Lin-yan, ZOU Qing-lin, LI Si-jie, LIU Han, LIU Lu-feng, HE Li-lian, LI Fu-sheng. Physiological Response and Drought Resistance Evaluation of Endophytic Bacteria to Sugarcane Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(12): 219-228. |
[7] | ZOU Lan, WANG Qian, LI Mu-yi, YE Kun-hao, HUANG Jing. Identification, Biocontrol and Plant Growth-promoting Potential of Endophytic Bacterial Strain JY-3-1R from Aconitum carmichaelii Debx. [J]. Biotechnology Bulletin, 2023, 39(10): 246-255. |
[8] | LI Ying, LONG Chang-mei, JIANG Biao, HAN Li-zhen. Colonization on the Peanuts of Two Plant-growth Promoting Rhizobacteria Strains and Effects on the Bacterial Community Structure of Rhizosphere [J]. Biotechnology Bulletin, 2022, 38(9): 237-247. |
[9] | HE Li-na, FENG Yuan, SHI Hui-min, YE Jian-ren. Screening and Identification of Endophytic Bacteria with Nematicidal Activity Against Bursaphelenchus xylophilus in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(8): 159-166. |
[10] | WANG Zi-ye, WANG Zhi-gang, YAN Ai-hua. Diversity of Soil Protist Community in the Rhizosphere of Morus alba L. at Different Tree Ages [J]. Biotechnology Bulletin, 2022, 38(8): 206-215. |
[11] | WANG Zi-yin, LIU Bing-ru, LI Zi-hao, ZHAO Xiao-yu. Characteristics of Soil Bacterial Community Structure in the Different Developmental Stages of Desert Grassland Caragana korshinskii Kom. Nebkhas [J]. Biotechnology Bulletin, 2022, 38(7): 205-214. |
[12] | GAO Xiao-ning, LIU Rui, WU Zi-lin, WU Jia-yun. Characteristics of Endophytic Fungal and Bacterial Community in the Stalks of Sugarcane Cultivars Resistant to Ratoon Stunting Disease [J]. Biotechnology Bulletin, 2022, 38(6): 166-173. |
[13] | WANG Chun-yan, LA Gui-xiao, SU Xiu-hong, LI Meng, DONG Cheng-ming. Screening of Endophytic Bacteria from Rehmannia glutinosa at Different Stages and Analysis of Their Growth-promoting Characteristics [J]. Biotechnology Bulletin, 2022, 38(4): 242-252. |
[14] | GAO Hui-hui, JIA Chen-bo, HAN Qin, SU Jian-yu, XU Chun-yan. Microbiological Mechanism of Root Rot of Lycium barbarum Ningqi-7 [J]. Biotechnology Bulletin, 2022, 38(12): 244-251. |
[15] | WANG Zhi-shan, LI Ni, WANG Wei-ping, LIU Yang. Research Progress in Endophytic Bacteria in Rice Seeds [J]. Biotechnology Bulletin, 2022, 38(1): 236-246. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||